The front-end website for our research group.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 

177 lines
10 KiB

<!DOCTYPE html>
<html class="clearScroll" lang="en">
<head>
<meta charset="utf-8">
<meta http-equiv="X-UA-Compatible" content="IE=edge">
<meta name="viewport" content="width=device-width, initial-scale=1"><!-- Begin Jekyll SEO tag v2.8.0 -->
<title>Research | ACEM</title>
<meta name="generator" content="Jekyll v4.3.2" />
<meta property="og:title" content="ACEM" />
<meta property="og:locale" content="en_US" />
<meta name="description" content="Research Page of Advanced Computational Electromagnetics (ACEM) Research Lab at University of Illinois Urbana-Champaign." />
<meta property="og:description" content="Research Page of Advanced Computational Electromagnetics (ACEM) Research Lab at University of Illinois Urbana-Champaign." />
<link rel="canonical" href="http://localhost:4000" />
<meta property="og:url" content="http://localhost:4000" />
<meta property="og:site_name" content="ACEM" />
<meta property="og:type" content="website" />
<meta name="twitter:card" content="summary" />
<meta property="twitter:title" content="ACEM" />
<script type="application/ld+json">{"@context":"https://schema.org","@type":"WebSite","description":"Research Page of Advanced Computational Electromagnetics (ACEM) Research Lab at University of Illinois Urbana-Champaign.","name":"ACEM Research Page","url":"http://localhost:4000/research"}</script>
<!-- End Jekyll SEO tag -->
<!-- Font loading -->
<link rel="preconnect" href="https://fonts.googleapis.com">
<link rel="preconnect" href="https://fonts.gstatic.com" crossorigin>
<link href="https://fonts.googleapis.com/css2?family=Montserrat:ital,wght@0,100;0,200;0,400;0,600;0,800;1,400&display=swap" rel="stylesheet">
<link rel="stylesheet" href="/assets/css/styles.css"><link type="application/atom+xml" rel="alternate" href="http://localhost:4000/feed.xml" title="Research | ACEM" />
</head>
<body>
<nav>
<div class="separator orange"></div>
<ul class="clearScroll">
<div id="logo">
<a href="/" alt="Advanced Computational Electromagnetics (ACEM) Research Group">ACEM</a>
</div>
<div id="navItems"><li ><a href="/">Home</a></li><li class="current"><a href="/research/">Research</a></li><li ><a href="/applications/">Applications</a></li><li ><a href="/publications/">Publications</a></li><li ><a href="/team/">Team</a></li></div>
</ul>
</nav>
<style>
#slideshow img, span {
animation: slideshow 50s infinite;
opacity: 0;
}
@keyframes slideshow {
4.0% {opacity: 1;}
20.0% {opacity: 1;}
24.0% {opacity: 0;}
}
#slideshow .orange {
position: relative;
top: 100%;
}
#slideshow img:nth-child(1) { animation-delay: 0s; }
#slideshow span:nth-child(6) { animation-delay: 0s; }
#slideshow img:nth-child(2) { animation-delay: 10s; }
#slideshow span:nth-child(7) { animation-delay: 10s; }
#slideshow img:nth-child(3) { animation-delay: 20s; }
#slideshow span:nth-child(8) { animation-delay: 20s; }
#slideshow img:nth-child(4) { animation-delay: 30s; }
#slideshow span:nth-child(9) { animation-delay: 30s; }
#slideshow img:nth-child(5) { animation-delay: 40s; }
#slideshow span:nth-child(10) { animation-delay: 40s; }
</style>
<div id="slideshowContainer">
<div id="slideshow"><img src="/assets/images/slideshow/ece_building.jpg" alt="Electrical Engineering Building"><img src="/assets/images/slideshow/antenna_analysis.png" alt="Platform-level In-Situ and Co-Site Antenna Analysis"><img src="/assets/images/slideshow/city_scale_channel.png" alt="Wireless Channel Modeling at the City Scale"><img src="/assets/images/slideshow/smart_radio.png" alt="Quantum-Assisted Smart Radio Environment"><img src="/assets/images/slideshow/statistical_wave_physics.png" alt="Statistical Wave Physics in Information Transmission"><span alt="Electrical Engineering Building">Electrical Engineering Building</span><span alt="Platform-level In-Situ and Co-Site Antenna Analysis">Platform-level In-Situ and Co-Site Antenna Analysis</span><span alt="Wireless Channel Modeling at the City Scale">Wireless Channel Modeling at the City Scale</span><span alt="Quantum-Assisted Smart Radio Environment">Quantum-Assisted Smart Radio Environment</span><span alt="Statistical Wave Physics in Information Transmission">Statistical Wave Physics in Information Transmission</span><div class="separator orange"></div>
</div>
</div><div class="topCard">
<div>
<h1>GOALS</h1>
<p>Our goal is to simulate classical and quantum electrodynamic physics with intelligent algorithms on state-of-the-art computers, where virtual experiments can be performed for the prediction, discovery, and design of complex systems.</p>
</div>
</div>
<div id="bannerContent" class="content">
<div class="nonItems">
<svg height="100%" width="100%" viewBox="0 0 5 1" class="downAccent" preserveAspectRatio="none">
<path d="M 0 0 V 0.2 C 1 0.5 4 0.5 5 0.2 V 0">
</svg>
<div>
<h1 id="research-statement">Research Statement</h1>
<p>The foundation of our research is theoretical, computational, and statistical electromagnetics. The classical electromagnetic (EM) theory guided by Maxwell’s Equations has been around for over 150 years. It has an incredible impact on many modern technologies such as antennas and wireless communication, integrated circuits and computer technologies, remote sensing, lasers and optoelectronics, and more. Nowadays, with the exponential growth in computing power, machine intelligence and data revolution, quantum technologies and materials, there are enormous opportunities to continue advancing fundamental EM theories toward next-generation technology developments and applications.</p>
<p><img src="/assets/images/research/ResearchOverview2019.png" alt="Overview" /></p>
<p>Our rudimentary research is the pursuit of mathematical and computational models that enable the prediction and discovery of classical and quantum electrodynamic phenomena. These models will allow for the design and optimization of novel electromagnetic and wireless systems at unprecedented scales, and contribute through education to the advancement of understanding.
Our recent research focus on four interrelated areas: (1) classical electromagnetism with scalable algorithms, (2) statistical electromagnetics integrating order and chaos, (3) quantum electromagnetics: simulating probability in space and time domain, and (4) Smart Radio Environments for NextG wireless systems.</p>
<h1 class="centerHeading" id="research-topics">Research Topics</h1>
</div>
</div><div class="item"><div class="itemScroll clearScroll">
<div class="itemInner">
<div class="description">
<h2 id="domain-decomposition-methodology-for-solving-maxwells-equations-at-scale">Domain Decomposition Methodology for Solving Maxwell’s Equations at Scale</h2>
<p>The goal of this research is to investigate first-principles modeling and analysis tools for these extremely large, multi-scale problems. The emphasis is placed on advancing parallel algorithms that are provably scalable, and facilitating a design-through-analysis paradigm for emerging and future complex systems.</p>
<p><a href="/research/domain-decomposition/">Read More</a></p>
</div>
<div class="image">
<img src="/assets/images/research/DDOverview.png" alt="DomainDecomposition" />
</div>
</div>
</div>
</div><div class="item"><svg height="100%" width="100%" viewBox="0 0 5 1" class="upAccent" preserveAspectRatio="none">
<path d="M 0 1 V 0.8 C 1 0.5 4 0.5 5 0.8 V 1">
</svg>
<svg height="100%" width="100%" viewBox="0 0 5 1" class="downAccent" preserveAspectRatio="none">
<path d="M 0 0 V 0.2 C 1 0.5 4 0.5 5 0.2 V 0">
</svg><div class="itemScroll clearScroll">
<div class="itemInner">
<div class="description">
<h2 id="physics-oriented-statistical-wave-analysis-for-chaotic-and-disordered-scattering-environments">Physics-Oriented Statistical Wave Analysis for Chaotic and Disordered Scattering Environments</h2>
<p>The main objective of this work is to investigate new fundamental mathematical models and computational algorithms for statistical wave analysis in complex, confined EM environments. This objective is attained by integrating wave chaos physics, random statistical analysis, and high-performance algorithms on state-of-the-art computational platforms. The research will overcome key challenges in the statistical characterization of three general classes of problems, fully wave chaotic systems, mixed integrable and chaotic systems, and complex fluctuating scattering environments.</p>
<p><a href="/research/physics-oriented-statistical-wave-analysis/">Read More</a></p>
</div>
<div class="image">
<img src="/assets/images/research/SGF-Motivation.png" alt="CavityCase" />
</div>
</div>
</div>
</div><div class="item"><div class="itemScroll clearScroll">
<div class="itemInner">
<div class="description">
<h2 id="quantum-computing-and-optimization-in-smart-radio-environments">Quantum Computing and Optimization in Smart Radio Environments</h2>
<p>Fusing electromagnetic models with quantum computing (QC) algorithms for rapid optimization of reconfigurable intelligent surfaces (RIS)-assisted beyond-5G/6G wireless networks.</p>
<p><a href="/research/quantum-optimization-RIS/">Read More</a></p>
</div>
<div class="image">
<img src="/assets/images/research/Quantum-RIS.png" alt="QuantumRIS" />
</div>
</div>
</div>
</div></div>
<footer>
<div id="footer">
<p>Links for Members:</p>
<div><a href="https://git.acem.ece.illinois.edu/">Gitea</a></div>
</div>
<p id="author">Made by Kenneth Jao</p>
</footer>
</body>
</html>