You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
94 lines
2.9 KiB
94 lines
2.9 KiB
2 years ago
|
/*
|
||
|
* Copyright(C) 1999-2021 National Technology & Engineering Solutions
|
||
|
* of Sandia, LLC (NTESS). Under the terms of Contract DE-NA0003525 with
|
||
|
* NTESS, the U.S. Government retains certain rights in this software.
|
||
|
*
|
||
|
* See packages/seacas/LICENSE for details
|
||
|
*/
|
||
|
|
||
|
#include <math.h>
|
||
|
|
||
|
/* Evaluates principal minor polynomial, returns the index of the eigenvalue just
|
||
|
left of mu. Based on Wilkinson's algorithm AEP, p.302. Found that this algorithm
|
||
|
could fail in practice when the p recursion overflowed. Fixed by rescaling the
|
||
|
recursion if it got too large. Routine returns -1 if this re-scaling doesn't work
|
||
|
for some reason. Otherwise it returns 0. Note Wilkinson indexes beta such that
|
||
|
first off-diagonal entry in T is beta[2]. We index such that it is beta[1]. */
|
||
|
|
||
|
int sturmcnt(double *alpha, /* vector of Lanczos scalars */
|
||
|
double *beta, /* vector of Lanczos scalars */
|
||
|
int j, /* index of Lanczos step we're on */
|
||
|
double mu, /* argument to the sequence generating polynomial */
|
||
|
double *p /* work vector for sturm sequence */
|
||
|
)
|
||
|
{
|
||
|
extern double DOUBLE_MAX; /* maximum double precision number to be used */
|
||
|
int cnt; /* number of sign changes in the sequence */
|
||
|
|
||
|
if (j == 1) {
|
||
|
/* have to special case this one */
|
||
|
if (alpha[1] > mu) {
|
||
|
cnt = 1;
|
||
|
}
|
||
|
else {
|
||
|
cnt = 0;
|
||
|
}
|
||
|
}
|
||
|
else {
|
||
|
/* compute the Sturm sequence */
|
||
|
double limit = sqrt(DOUBLE_MAX);
|
||
|
p[0] = 1;
|
||
|
p[1] = alpha[1] - mu;
|
||
|
double *pntr_p = &p[2];
|
||
|
double *pntr_p1 = &p[1];
|
||
|
double *pntr_p2 = &p[0];
|
||
|
double *pntr_alpha = &alpha[2];
|
||
|
double *pntr_beta = &beta[1];
|
||
|
for (int i = 2; i <= j; i++) {
|
||
|
*pntr_p++ = (*pntr_alpha - mu) * (*pntr_p1) - (*pntr_beta) * (*pntr_beta) * (*pntr_p2);
|
||
|
pntr_alpha++;
|
||
|
pntr_beta++;
|
||
|
pntr_p1++;
|
||
|
pntr_p2++;
|
||
|
double scale = fabs(*pntr_p1);
|
||
|
if (scale > limit) {
|
||
|
*pntr_p1 /= scale;
|
||
|
*pntr_p2 /= scale;
|
||
|
/* re-scale to avoid overflow in p recursion */
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* count sign changes */
|
||
|
cnt = 0;
|
||
|
int last_sign = 1;
|
||
|
pntr_p = &p[1];
|
||
|
for (int i = j; i; i--) {
|
||
|
if (*pntr_p != *pntr_p || fabs(*pntr_p) > limit) {
|
||
|
return (-1);
|
||
|
/* ... re-scaling failed; bail out and return error code.
|
||
|
Note (x != x) is TRUE iff x is NaN, so this check
|
||
|
should be ok on non-IEEE floating point systems too. */
|
||
|
}
|
||
|
int sign;
|
||
|
if (*pntr_p > 0) {
|
||
|
sign = 1;
|
||
|
}
|
||
|
else if (*pntr_p < 0) {
|
||
|
sign = -1;
|
||
|
}
|
||
|
else {
|
||
|
sign = -last_sign;
|
||
|
}
|
||
|
if (sign == last_sign) {
|
||
|
cnt++;
|
||
|
}
|
||
|
last_sign = sign;
|
||
|
pntr_p++;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* cnt is number of evals strictly > than mu. Instead send back index of the
|
||
|
eigenvalue just left of mu. */
|
||
|
return (j - cnt); /* ... things seem ok. */
|
||
|
}
|