You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
305 lines
10 KiB
305 lines
10 KiB
2 years ago
|
/*
|
||
|
* Copyright(C) 1999-2021 National Technology & Engineering Solutions
|
||
|
* of Sandia, LLC (NTESS). Under the terms of Contract DE-NA0003525 with
|
||
|
* NTESS, the U.S. Government retains certain rights in this software.
|
||
|
*
|
||
|
* See packages/seacas/LICENSE for details
|
||
|
*/
|
||
|
|
||
|
#include "smalloc.h" // for sfree, smalloc
|
||
|
#include "structs.h" // for vtx_data
|
||
|
#include <stdio.h> // for fprintf, printf, FILE, NULL
|
||
|
#include <stdlib.h>
|
||
|
|
||
|
/* Print metrics of partition quality. */
|
||
|
|
||
|
void countup_cube(struct vtx_data **graph, /* graph data structure */
|
||
|
int nvtxs, /* number of vtxs in graph */
|
||
|
int * assignment, /* set number of each vtx (length nvtxs+1) */
|
||
|
int ndims, /* number of cuts at each level */
|
||
|
int ndims_tot, /* total number of divisions of graph */
|
||
|
int print_lev, /* level of output */
|
||
|
FILE * outfile, /* output file if not NULL */
|
||
|
int using_ewgts /* are edge weights being used? */
|
||
|
)
|
||
|
{
|
||
|
int print2file = (outfile != NULL);
|
||
|
|
||
|
int nsets = (1 << ndims_tot);
|
||
|
double *cutsize = smalloc(nsets * sizeof(double));
|
||
|
double *hopsize = smalloc(nsets * sizeof(double));
|
||
|
int * setsize = smalloc(nsets * sizeof(int));
|
||
|
|
||
|
int *setseen = smalloc(nsets * sizeof(int));
|
||
|
int *startptr = smalloc((nsets + 1) * sizeof(int));
|
||
|
int *inorder = smalloc(nvtxs * sizeof(int));
|
||
|
for (int j = 0; j < nsets; j++) {
|
||
|
setsize[j] = 0;
|
||
|
}
|
||
|
for (int i = 1; i <= nvtxs; i++) {
|
||
|
++setsize[assignment[i]];
|
||
|
}
|
||
|
|
||
|
/* Modify setsize to become index into vertex list. */
|
||
|
for (int j = 1; j < nsets; j++) {
|
||
|
setsize[j] += setsize[j - 1];
|
||
|
}
|
||
|
for (int j = nsets - 1; j > 0; j--) {
|
||
|
startptr[j] = setsize[j] = setsize[j - 1];
|
||
|
}
|
||
|
startptr[0] = setsize[0] = 0;
|
||
|
startptr[nsets] = nvtxs;
|
||
|
for (int i = 1; i <= nvtxs; i++) {
|
||
|
int set = assignment[i];
|
||
|
inorder[setsize[set]] = i;
|
||
|
setsize[set]++;
|
||
|
}
|
||
|
|
||
|
int start_dims;
|
||
|
int level;
|
||
|
if (abs(print_lev) > 1) { /* Print data from all levels of recursion. */
|
||
|
start_dims = ndims;
|
||
|
level = 0;
|
||
|
}
|
||
|
else { /* Only print data from final level. */
|
||
|
start_dims = ndims_tot;
|
||
|
level = (ndims_tot + ndims - 1) / ndims - 1;
|
||
|
}
|
||
|
int k = start_dims;
|
||
|
while (k <= ndims_tot) {
|
||
|
level++;
|
||
|
nsets = (1 << k);
|
||
|
for (int j = 0; j < nsets; j++) {
|
||
|
cutsize[j] = 0;
|
||
|
hopsize[j] = 0;
|
||
|
setsize[j] = 0;
|
||
|
}
|
||
|
int mask = 0;
|
||
|
for (int j = 0; j < k; j++) {
|
||
|
mask = (mask << 1) + 1;
|
||
|
}
|
||
|
|
||
|
for (int i = 1; i <= nvtxs; i++) {
|
||
|
int set = assignment[i] & mask;
|
||
|
setsize[set] += graph[i]->vwgt;
|
||
|
for (int j = 1; j < graph[i]->nedges; j++) {
|
||
|
int neighbor = graph[i]->edges[j];
|
||
|
int set2 = assignment[neighbor] & mask;
|
||
|
if (set != set2) {
|
||
|
double ewgt = 1;
|
||
|
if (using_ewgts) {
|
||
|
ewgt = graph[i]->ewgts[j];
|
||
|
}
|
||
|
cutsize[set] += ewgt;
|
||
|
int bits = set ^ set2;
|
||
|
for (int l = bits; l; l >>= 1) {
|
||
|
if (l & 1) {
|
||
|
hopsize[set] += ewgt;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
int tot_size = 0;
|
||
|
int max_size = 0;
|
||
|
for (int set = 0; set < nsets; set++) {
|
||
|
tot_size += setsize[set];
|
||
|
if (setsize[set] > max_size) {
|
||
|
max_size = setsize[set];
|
||
|
}
|
||
|
}
|
||
|
|
||
|
int min_size = max_size;
|
||
|
for (int set = 0; set < nsets; set++) {
|
||
|
if (setsize[set] < min_size) {
|
||
|
min_size = setsize[set];
|
||
|
}
|
||
|
}
|
||
|
|
||
|
double ncuts = 0;
|
||
|
double nhops = 0;
|
||
|
double total_bdyvtxs = 0;
|
||
|
int total_neighbors = 0;
|
||
|
double bdyvtx_hops_tot = 0;
|
||
|
double bdyvtx_hops_max = 0;
|
||
|
double bdyvtx_hops_min = 0;
|
||
|
double maxcuts = 0;
|
||
|
double mincuts = 0;
|
||
|
double maxhops = 0;
|
||
|
double minhops = 0;
|
||
|
int total_internal = 0;
|
||
|
int min_internal = max_size;
|
||
|
int max_internal = 0;
|
||
|
double maxbdy = 0;
|
||
|
double minbdy = 0;
|
||
|
int maxneighbors = 0;
|
||
|
int minneighbors = 0;
|
||
|
|
||
|
printf("\nAfter level %d (nsets = %d):\n", level, nsets);
|
||
|
if (print2file) {
|
||
|
fprintf(outfile, "\nAfter level %d (nsets = %d):\n", level, nsets);
|
||
|
}
|
||
|
if (print_lev < 0) {
|
||
|
printf(" set size cuts hops bndy_vtxs adj_sets\n");
|
||
|
if (print2file) {
|
||
|
fprintf(outfile, " set size cuts hops bndy_vtxs adj_sets\n");
|
||
|
}
|
||
|
}
|
||
|
for (int set = 0; set < nsets; set++) {
|
||
|
int internal = setsize[set];
|
||
|
for (int i = 0; i < nsets; i++) {
|
||
|
setseen[i] = 0;
|
||
|
}
|
||
|
/* Compute number of set neighbors, and number of vtxs on boundary. */
|
||
|
/* Loop through multiple assignments defining current set. */
|
||
|
int bdyvtxs = 0;
|
||
|
int bdyvtx_hops = 0;
|
||
|
for (int l = 0; l < (1 << (ndims_tot - k)); l++) {
|
||
|
int set2 = (l << k) + set;
|
||
|
for (int i = startptr[set2]; i < startptr[set2 + 1]; i++) {
|
||
|
int onbdy = 0;
|
||
|
int vtx = inorder[i];
|
||
|
for (int j = 1; j < graph[vtx]->nedges; j++) {
|
||
|
int neighbor = graph[vtx]->edges[j];
|
||
|
int set3 = assignment[neighbor] & mask;
|
||
|
if (set3 != set) { /* Is vtx on boundary? */
|
||
|
/* Has this neighboring set been seen already? */
|
||
|
if (setseen[set3] >= 0) {
|
||
|
int bits = set ^ set3;
|
||
|
for (int ll = bits; ll; ll >>= 1) {
|
||
|
if (ll & 1) {
|
||
|
++bdyvtx_hops;
|
||
|
}
|
||
|
}
|
||
|
++onbdy;
|
||
|
setseen[set3] = -setseen[set3] - 1;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
/* Now reset all the setseen values to be positive. */
|
||
|
if (onbdy != 0) {
|
||
|
for (int j = 1; j < graph[vtx]->nedges; j++) {
|
||
|
int neighbor = graph[vtx]->edges[j];
|
||
|
int set3 = assignment[neighbor] & mask;
|
||
|
if (setseen[set3] < 0) {
|
||
|
setseen[set3] = -setseen[set3];
|
||
|
}
|
||
|
}
|
||
|
internal -= graph[vtx]->vwgt;
|
||
|
}
|
||
|
bdyvtxs += onbdy;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
total_internal += internal;
|
||
|
bdyvtx_hops_tot += bdyvtx_hops;
|
||
|
if (bdyvtx_hops > bdyvtx_hops_max) {
|
||
|
bdyvtx_hops_max = bdyvtx_hops;
|
||
|
}
|
||
|
if (set == 0 || bdyvtx_hops < bdyvtx_hops_min) {
|
||
|
bdyvtx_hops_min = bdyvtx_hops;
|
||
|
}
|
||
|
if (internal > max_internal) {
|
||
|
max_internal = internal;
|
||
|
}
|
||
|
if (set == 0 || internal < min_internal) {
|
||
|
min_internal = internal;
|
||
|
}
|
||
|
|
||
|
/* Now count up the number of neighboring sets. */
|
||
|
int neighbor_sets = 0;
|
||
|
for (int i = 0; i < nsets; i++) {
|
||
|
if (setseen[i] != 0) {
|
||
|
++neighbor_sets;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if (print_lev < 0) {
|
||
|
printf(" %5d %5d %6g %6g %6d %6d\n", set, setsize[set], cutsize[set],
|
||
|
hopsize[set], bdyvtxs, neighbor_sets);
|
||
|
if (print2file) {
|
||
|
fprintf(outfile, " %5d %5d %6g %6g %6d %6d\n", set, setsize[set],
|
||
|
cutsize[set], hopsize[set], bdyvtxs, neighbor_sets);
|
||
|
}
|
||
|
}
|
||
|
if (cutsize[set] > maxcuts) {
|
||
|
maxcuts = cutsize[set];
|
||
|
}
|
||
|
if (set == 0 || cutsize[set] < mincuts) {
|
||
|
mincuts = cutsize[set];
|
||
|
}
|
||
|
if (hopsize[set] > maxhops) {
|
||
|
maxhops = hopsize[set];
|
||
|
}
|
||
|
if (set == 0 || hopsize[set] < minhops) {
|
||
|
minhops = hopsize[set];
|
||
|
}
|
||
|
if (bdyvtxs > maxbdy) {
|
||
|
maxbdy = bdyvtxs;
|
||
|
}
|
||
|
if (set == 0 || bdyvtxs < minbdy) {
|
||
|
minbdy = bdyvtxs;
|
||
|
}
|
||
|
if (neighbor_sets > maxneighbors) {
|
||
|
maxneighbors = neighbor_sets;
|
||
|
}
|
||
|
if (set == 0 || neighbor_sets < minneighbors) {
|
||
|
minneighbors = neighbor_sets;
|
||
|
}
|
||
|
ncuts += cutsize[set];
|
||
|
nhops += hopsize[set];
|
||
|
total_bdyvtxs += bdyvtxs;
|
||
|
total_neighbors += neighbor_sets;
|
||
|
}
|
||
|
ncuts /= 2;
|
||
|
nhops /= 2;
|
||
|
|
||
|
printf("\n");
|
||
|
printf(" Total Max/Set Min/Set\n");
|
||
|
printf(" ----- ------- -------\n");
|
||
|
printf("Set Size: %11d %11d %11d\n", tot_size, max_size, min_size);
|
||
|
printf("Edge Cuts: %11g %11g %11g\n", ncuts, maxcuts, mincuts);
|
||
|
printf("Hypercube Hops: %11g %11g %11g\n", nhops, maxhops, minhops);
|
||
|
printf("Boundary Vertices: %11g %11g %11g\n", total_bdyvtxs, maxbdy, minbdy);
|
||
|
printf("Boundary Vertex Hops: %11g %11g %11g\n", bdyvtx_hops_tot, bdyvtx_hops_max,
|
||
|
bdyvtx_hops_min);
|
||
|
printf("Adjacent Sets: %11d %11d %11d\n", total_neighbors, maxneighbors, minneighbors);
|
||
|
printf("Internal Vertices: %11d %11d %11d\n\n", total_internal, max_internal,
|
||
|
min_internal);
|
||
|
|
||
|
if (print2file) {
|
||
|
fprintf(outfile, "\n");
|
||
|
fprintf(outfile, " Total Max/Set Min/Set\n");
|
||
|
fprintf(outfile, " ----- ------- -------\n");
|
||
|
fprintf(outfile, "Set Size: %11d %11d %11d\n", tot_size, max_size, min_size);
|
||
|
fprintf(outfile, "Edge Cuts: %11g %11g %11g\n", ncuts, maxcuts, mincuts);
|
||
|
fprintf(outfile, "Hypercube Hops: %11g %11g %11g\n", nhops, maxhops, minhops);
|
||
|
fprintf(outfile, "Boundary Vertices: %11g %11g %11g\n", total_bdyvtxs, maxbdy, minbdy);
|
||
|
fprintf(outfile, "Boundary Vertex Hops: %11g %11g %11g\n", bdyvtx_hops_tot, bdyvtx_hops_max,
|
||
|
bdyvtx_hops_min);
|
||
|
fprintf(outfile, "Adjacent Sets: %11d %11d %11d\n", total_neighbors, maxneighbors,
|
||
|
minneighbors);
|
||
|
fprintf(outfile, "Internal Vertices: %11d %11d %11d\n\n", total_internal, max_internal,
|
||
|
min_internal);
|
||
|
}
|
||
|
|
||
|
if (k == ndims_tot) {
|
||
|
k++;
|
||
|
}
|
||
|
else {
|
||
|
k += ndims;
|
||
|
if (k > ndims_tot) {
|
||
|
k = ndims_tot;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
sfree(cutsize);
|
||
|
sfree(hopsize);
|
||
|
sfree(setsize);
|
||
|
sfree(setseen);
|
||
|
sfree(startptr);
|
||
|
sfree(inorder);
|
||
|
}
|