Cloned SEACAS for EXODUS library with extra build files for internal package management.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

521 lines
16 KiB

2 years ago
/*
* @HEADER
*
* ***********************************************************************
*
* Zoltan Toolkit for Load-balancing, Partitioning, Ordering and Coloring
* Copyright 2012 Sandia Corporation
*
* Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation,
* the U.S. Government retains certain rights in this software.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* 3. Neither the name of the Corporation nor the names of the
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* Questions? Contact Karen Devine kddevin@sandia.gov
* Erik Boman egboman@sandia.gov
*
* ***********************************************************************
*
* @HEADER
*/
/***************************************************************
** Basic example of using Zoltan to compute an RCB partitioning
** of a very simple mesh or graph.
***************************************************************/
#include <mpi.h>
#include <stdio.h>
#include <stdlib.h>
#include <ctype.h>
#include "zoltan.h"
/* Name of file containing the mesh to be partitioned */
static char *global_fname="mesh.txt";
/* Structure to hold mesh data */
typedef struct{
int numGlobalPoints;
int numMyPoints;
ZOLTAN_ID_PTR myGlobalIDs;
float *x;
float *y;
} MESH_DATA;
/* Application defined query functions */
static int get_number_of_objects(void *data, int *ierr);
static void get_object_list(void *data, int sizeGID, int sizeLID,
ZOLTAN_ID_PTR globalID, ZOLTAN_ID_PTR localID,
int wgt_dim, float *obj_wgts, int *ierr);
static int get_num_geometry(void *data, int *ierr);
static void get_geometry_list(void *data, int sizeGID, int sizeLID,
int num_obj, ZOLTAN_ID_PTR globalID, ZOLTAN_ID_PTR localID,
int num_dim, double *geom_vec, int *ierr);
/* read in and display input mesh, handle errors */
static int get_next_line(FILE *fp, char *buf, int bufsize);
static void input_file_error(int numProcs, int tag, int startProc);
void read_input_objects(int myRank, int numProcs, char *fname, MESH_DATA *myData);
void showSimpleMeshPartitions(int myProc, int numIDs, ZOLTAN_ID_PTR IDs, int *parts);
int main(int argc, char *argv[])
{
int rc, i, myRank, numProcs;
float ver;
struct Zoltan_Struct *zz;
int changes, numGidEntries, numLidEntries, numImport, numExport;
ZOLTAN_ID_PTR importGlobalGids, importLocalGids, exportGlobalGids, exportLocalGids;
int *importProcs, *importToPart, *exportProcs, *exportToPart;
int *parts;
FILE *fp;
MESH_DATA myMesh;
/******************************************************************
** Initialize MPI and Zoltan
******************************************************************/
MPI_Init(&argc, &argv);
MPI_Comm_rank(MPI_COMM_WORLD, &myRank);
MPI_Comm_size(MPI_COMM_WORLD, &numProcs);
rc = Zoltan_Initialize(argc, argv, &ver);
if (rc != ZOLTAN_OK){
printf("sorry...\n");
MPI_Finalize();
exit(0);
}
/******************************************************************
** Read geometry from input file and distribute it unevenly
******************************************************************/
fp = fopen(global_fname, "r");
if (!fp){
if (myRank == 0) fprintf(stderr,"ERROR: Can not open %s\n",global_fname);
MPI_Finalize();
exit(1);
}
fclose(fp);
read_input_objects(myRank, numProcs, global_fname, &myMesh);
/******************************************************************
** Create a Zoltan library structure for this instance of load
** balancing. Set the parameters and query functions that will
** govern the library's calculation. See the Zoltan User's
** Guide for the definition of these and many other parameters.
******************************************************************/
zz = Zoltan_Create(MPI_COMM_WORLD);
/* General parameters */
Zoltan_Set_Param(zz, "DEBUG_LEVEL", "1");
Zoltan_Set_Param(zz, "LB_METHOD", "RCB");
Zoltan_Set_Param(zz, "NUM_GID_ENTRIES", "1");
Zoltan_Set_Param(zz, "NUM_LID_ENTRIES", "1");
Zoltan_Set_Param(zz, "OBJ_WEIGHT_DIM", "0");
Zoltan_Set_Param(zz, "RETURN_LISTS", "ALL");
/* RCB parameters */
Zoltan_Set_Param(zz, "RCB_OUTPUT_LEVEL", "0");
Zoltan_Set_Param(zz, "RCB_RECTILINEAR_BLOCKS", "1");
/*Zoltan_Set_Param(zz, "RCB_RECTILINEAR_BLOCKS", "0"); */
/* Query functions, to provide geometry to Zoltan */
Zoltan_Set_Num_Obj_Fn(zz, get_number_of_objects, &myMesh);
Zoltan_Set_Obj_List_Fn(zz, get_object_list, &myMesh);
Zoltan_Set_Num_Geom_Fn(zz, get_num_geometry, &myMesh);
Zoltan_Set_Geom_Multi_Fn(zz, get_geometry_list, &myMesh);
/******************************************************************
** Zoltan can now partition the vertices in the simple mesh.
** In this simple example, we assume the number of partitions is
** equal to the number of processes. Process rank 0 will own
** partition 0, process rank 1 will own partition 1, and so on.
******************************************************************/
rc = Zoltan_LB_Partition(zz, /* input (all remaining fields are output) */
&changes, /* 1 if partitioning was changed, 0 otherwise */
&numGidEntries, /* Number of integers used for a global ID */
&numLidEntries, /* Number of integers used for a local ID */
&numImport, /* Number of vertices to be sent to me */
&importGlobalGids, /* Global IDs of vertices to be sent to me */
&importLocalGids, /* Local IDs of vertices to be sent to me */
&importProcs, /* Process rank for source of each incoming vertex */
&importToPart, /* New partition for each incoming vertex */
&numExport, /* Number of vertices I must send to other processes*/
&exportGlobalGids, /* Global IDs of the vertices I must send */
&exportLocalGids, /* Local IDs of the vertices I must send */
&exportProcs, /* Process to which I send each of the vertices */
&exportToPart); /* Partition to which each vertex will belong */
if (rc != ZOLTAN_OK){
printf("sorry...\n");
MPI_Finalize();
Zoltan_Destroy(&zz);
exit(0);
}
/******************************************************************
** Visualize the mesh partitioning before and after calling Zoltan.
******************************************************************/
parts = (int *)malloc(sizeof(int) * myMesh.numMyPoints);
for (i=0; i < myMesh.numMyPoints; i++){
parts[i] = myRank;
}
if (myRank== 0){
printf("\nMesh partition assignments before calling Zoltan\n");
}
showSimpleMeshPartitions(myRank, myMesh.numMyPoints, myMesh.myGlobalIDs, parts);
for (i=0; i < numExport; i++){
parts[exportLocalGids[i]] = exportToPart[i];
}
if (myRank == 0){
printf("Mesh partition assignments after calling Zoltan\n");
}
showSimpleMeshPartitions(myRank, myMesh.numMyPoints, myMesh.myGlobalIDs, parts);
free(parts);
/******************************************************************
** Free the arrays allocated by Zoltan_LB_Partition, and free
** the storage allocated for the Zoltan structure.
******************************************************************/
Zoltan_LB_Free_Part(&importGlobalGids, &importLocalGids,
&importProcs, &importToPart);
Zoltan_LB_Free_Part(&exportGlobalGids, &exportLocalGids,
&exportProcs, &exportToPart);
Zoltan_Destroy(&zz);
/**********************
** all done ***********
**********************/
MPI_Finalize();
if (myMesh.numMyPoints > 0){
free(myMesh.myGlobalIDs);
free(myMesh.x);
free(myMesh.y);
}
return 0;
}
/* Application defined query functions */
static int get_number_of_objects(void *data, int *ierr)
{
MESH_DATA *mesh= (MESH_DATA *)data;
*ierr = ZOLTAN_OK;
return mesh->numMyPoints;
}
static void get_object_list(void *data, int sizeGID, int sizeLID,
ZOLTAN_ID_PTR globalID, ZOLTAN_ID_PTR localID,
int wgt_dim, float *obj_wgts, int *ierr)
{
int i;
MESH_DATA *mesh= (MESH_DATA *)data;
*ierr = ZOLTAN_OK;
/* In this example, return the IDs of our objects, but no weights.
* Zoltan will assume equally weighted objects.
*/
for (i=0; i<mesh->numMyPoints; i++){
globalID[i] = mesh->myGlobalIDs[i];
localID[i] = i;
}
}
static int get_num_geometry(void *data, int *ierr)
{
*ierr = ZOLTAN_OK;
return 2;
}
static void get_geometry_list(void *data, int sizeGID, int sizeLID,
int num_obj,
ZOLTAN_ID_PTR globalID, ZOLTAN_ID_PTR localID,
int num_dim, double *geom_vec, int *ierr)
{
int i;
MESH_DATA *mesh= (MESH_DATA *)data;
if ( (sizeGID != 1) || (sizeLID != 1) || (num_dim != 2)){
*ierr = ZOLTAN_FATAL;
return;
}
*ierr = ZOLTAN_OK;
for (i=0; i < num_obj ; i++){
geom_vec[2*i] = (double)mesh->x[i];
geom_vec[2*i + 1] = (double)mesh->y[i];
}
return;
}
static int get_next_line(FILE *fp, char *buf, int bufsize)
{
int i, cval, len;
char *c;
while (1){
c = fgets(buf, bufsize, fp);
if (c == NULL)
return 0; /* end of file */
len = strlen(c);
for (i=0, c=buf; i < len; i++, c++){
cval = (int)*c;
if (isspace(cval) == 0) break;
}
if (i == len) continue; /* blank line */
if (*c == '#') continue; /* comment */
if (c != buf){
strcpy(buf, c);
}
break;
}
return strlen(buf); /* number of characters */
}
/* Proc 0 notifies others of error and exits */
static void input_file_error(int numProcs, int tag, int startProc)
{
int i, val;
val = -1;
fprintf(stderr,"ERROR in input file.\n");
for (i=startProc; i < numProcs; i++){
/* these procs have posted receive for "tag" */
MPI_Send(&val, 1, MPI_INT, i, tag, MPI_COMM_WORLD);
}
for (i=1; i < startProc; i++){
/* these procs are done */
MPI_Send(&val, 1, MPI_INT, i, 0, MPI_COMM_WORLD);
}
MPI_Finalize();
exit(1);
}
/* Proc 0 reads the points in the input file and divides them across processes */
void read_input_objects(int myRank, int numProcs, char *fname, MESH_DATA *myMesh)
{
char *buf;
int bufsize = 512;
int num, nobj, remaining, ack=0;
int i, j;
ZOLTAN_ID_PTR gids;
float *xcoord, *ycoord;
FILE *fp;
MPI_Status status;
int ack_tag = 5, count_tag = 10, id_tag = 15;
int x_tag = 20, y_tag = 25;
if (myRank == 0){
buf = (char *)malloc(sizeof(char) * bufsize);
fp = fopen(fname, "r");
num = get_next_line(fp, buf, bufsize);
if (num == 0) input_file_error(numProcs, count_tag, 1);
num = sscanf(buf, "%d", &myMesh->numGlobalPoints);
if (num != 1) input_file_error(numProcs, count_tag, 1);
if (numProcs > 1){
nobj = myMesh->numGlobalPoints / 2;
remaining = myMesh->numGlobalPoints - nobj;
}
else{
nobj = myMesh->numGlobalPoints;
remaining = 0;
}
myMesh->myGlobalIDs = (ZOLTAN_ID_TYPE *)malloc(sizeof(ZOLTAN_ID_TYPE) * nobj);
myMesh->x = (float *)malloc(sizeof(float) * nobj);
myMesh->y = (float *)malloc(sizeof(float) * nobj);
myMesh->numMyPoints= nobj;
for (i=0; i < nobj; i++){
num = get_next_line(fp, buf, bufsize);
if (num == 0) input_file_error(numProcs, count_tag, 1);
num = sscanf(buf, ZOLTAN_ID_SPEC "%f %f", myMesh->myGlobalIDs + i,
myMesh->x + i, myMesh->y + i);
if (num != 3) input_file_error(numProcs, count_tag, 1);
}
gids = (ZOLTAN_ID_TYPE *)malloc(sizeof(ZOLTAN_ID_TYPE) * (nobj + 1));
xcoord = (float *)malloc(sizeof(float) * (nobj + 1));
ycoord = (float *)malloc(sizeof(float) * (nobj + 1));
for (i=1; i < numProcs; i++){
if (remaining > 1){
nobj = remaining / 2;
remaining -= nobj;
}
else if (remaining == 1){
nobj = 1;
remaining = 0;
}
else{
nobj = 0;
}
if ((i == numProcs - 1) && (remaining > 0))
nobj += remaining;
if (nobj > 0){
for (j=0; j < nobj; j++){
num = get_next_line(fp, buf, bufsize);
if (num == 0) input_file_error(numProcs, count_tag, i);
num = sscanf(buf, ZOLTAN_ID_SPEC "%f %f", gids+j, xcoord+j, ycoord+j);
if (num != 3) input_file_error(numProcs, count_tag, i);
}
}
MPI_Send(&nobj, 1, MPI_INT, i, count_tag, MPI_COMM_WORLD);
MPI_Recv(&ack, 1, MPI_INT, i, ack_tag, MPI_COMM_WORLD, &status);
if (nobj > 0){
MPI_Send(gids, nobj, ZOLTAN_ID_MPI_TYPE, i, id_tag, MPI_COMM_WORLD);
MPI_Send(xcoord, nobj, MPI_FLOAT, i, x_tag, MPI_COMM_WORLD);
MPI_Send(ycoord, nobj, MPI_FLOAT, i, y_tag, MPI_COMM_WORLD);
}
}
free(gids);
free(xcoord);
free(ycoord);
fclose(fp);
free(buf);
/* signal all procs it is OK to go on */
ack = 0;
for (i=1; i < numProcs; i++){
MPI_Send(&ack, 1, MPI_INT, i, 0, MPI_COMM_WORLD);
}
}
else{
MPI_Recv(&myMesh->numMyPoints, 1, MPI_INT, 0, count_tag, MPI_COMM_WORLD, &status);
ack = 0;
if (myMesh->numMyPoints > 0){
myMesh->myGlobalIDs = (ZOLTAN_ID_TYPE *)malloc(sizeof(ZOLTAN_ID_TYPE) * myMesh->numMyPoints);
myMesh->x = (float *)malloc(sizeof(float) * myMesh->numMyPoints);
myMesh->y = (float *)malloc(sizeof(float) * myMesh->numMyPoints);
MPI_Send(&ack, 1, MPI_INT, 0, ack_tag, MPI_COMM_WORLD);
MPI_Recv(myMesh->myGlobalIDs, myMesh->numMyPoints, ZOLTAN_ID_MPI_TYPE, 0,
id_tag, MPI_COMM_WORLD, &status);
MPI_Recv(myMesh->x, myMesh->numMyPoints, MPI_FLOAT, 0,
x_tag, MPI_COMM_WORLD, &status);
MPI_Recv(myMesh->y, myMesh->numMyPoints, MPI_FLOAT, 0,
y_tag, MPI_COMM_WORLD, &status);
}
else if (myMesh->numMyPoints == 0){
MPI_Send(&ack, 1, MPI_INT, 0, ack_tag, MPI_COMM_WORLD);
}
else{
MPI_Finalize();
exit(1);
}
MPI_Recv(&ack, 1, MPI_INT, 0, 0, MPI_COMM_WORLD, &status);
if (ack < 0){
MPI_Finalize();
exit(1);
}
}
}
void showSimpleMeshPartitions(int myProc, int numIDs, ZOLTAN_ID_PTR GIDs, int *parts)
{
int partAssign[25], allPartAssign[25];
int i, j, part;
memset(partAssign, 0, sizeof(int) * 25);
for (i=0; i < numIDs; i++){
partAssign[GIDs[i]-1] = parts[i];
}
MPI_Reduce(partAssign, allPartAssign, 25, MPI_INT, MPI_MAX, 0, MPI_COMM_WORLD);
if (myProc == 0){
for (i=20; i >= 0; i-=5){
for (j=0; j < 5; j++){
part = allPartAssign[i + j];
if (j < 4)
printf("%d-----",part);
else
printf("%d\n",part);
}
if (i > 0)
printf("| | | | |\n");
}
printf("\n");
}
}