\chapter{Summary of Functions} \label{appx:function} \begin{center} \begin{tabular}{||l|l||} \hline \multicolumn{2}{||c||}{} \\ \multicolumn{2}{||c||}{Standard \caps{FORTRAN} Functions} \\ \multicolumn{2}{||c||}{} \\ \hline \param{r} = \cmd{AINT} ($x$) & truncation: $|x|$ \\ \param{r} = \cmd{ANINT} ($x$) & nearest integer: [$x + .5*$sign($x$)] \\ \param{r} = \cmd{ABS} ($x$) & absolute value: $|x|$ \\ \param{r} = \cmd{MOD} ($x$, $y$) & remainder: $x - y * [x/y]$ \\ \param{r} = \cmd{SIGN} ($x$, $y$) & transfer of sign: $|x|$ sign $y$ \\ \param{r} = \cmd{DIM} ($x$, $y$) & positive difference: $x - $min($x$,$y$) \\ \param{r} = \cmd{MAX} ($x$, $y$, \ldots) & maximum of $x$, $y$, \ldots\ \\ \param{r} = \cmd{MIN} ($x$, $y$, \ldots) & minimum of $x$, $y$, \ldots\ \\ \param{r} = \cmd{SQRT} ($x$) & square root: $\sqrt{x}$ \\ \param{r} = \cmd{EXP} ($x$) & exponentiation: e$^{x}$ \\ \param{r} = \cmd{LOG} ($x$) & natural logarithm: log$_{e}x$ \\ \param{r} = \cmd{LOG10} ($x$) & common logarithm: log$_{10}x$ \\ \param{r} = \cmd{SIN} ($x$) & sine $x$ \\ \param{r} = \cmd{COS} ($x$) & cosine $x$ \\ \param{r} = \cmd{TAN} ($x$) & tangent $x$ \\ \param{r} = \cmd{ASIN} ($x$) & arc sine $x$ \\ \param{r} = \cmd{ACOS} ($x$) & arc cosine $x$ \\ \param{r} = \cmd{ATAN} ($x$) & arc tangent $x$ \\ \param{r} = \cmd{ATAN2} ($x$, $y$) & arc tangent $x/y$ \\ \param{r} = \cmd{SINH} ($x$) & hyperbolic sine $x$ \\ \param{r} = \cmd{COSH} ($x$) & hyperbolic cosine $x$ \\ \param{r} = \cmd{TANH} ($x$) & hyperbolic tangent $x$ \\ \hline \end{tabular} \end{center} \medskip \begin{center} \begin{tabular}{||l|l||} \hline \multicolumn{2}{||c||}{} \\ \multicolumn{2}{||c||}{Tensor Principal Values and Magnitude Functions} \\ \multicolumn{2}{||c||}{} \\ \hline \param{r} = \cmd{PMAX} ($T_{11}$, $T_{22}$, $T_{33}$, $T_{12}$, $T_{23}$, $T_{31}$) & maximum principal values \\ \param{r} = \cmd{PMIN} ($T_{11}$, $T_{22}$, $T_{33}$, $T_{12}$, $T_{23}$, $T_{31}$) & minimum principal values \\ \param{r} = \cmd{PMAX2} ($T_{11}$, $T_{22}$, $T_{12}$) & maximum principal values (2D) \\ \param{r} = \cmd{PMIN2} ($T_{11}$, $T_{22}$, $T_{12}$) & minimum principal values (2D) \\ \param{r} = \cmd{TMAG} ($T_{11}$, $T_{22}$, $T_{33}$, $T_{12}$, $T_{23}$, $T_{31}$) & magnitude of the deviatoric part \\ \hline \end{tabular} \end{center} \medskip \begin{center} \begin{tabular}{||l|l||} \hline \multicolumn{2}{||c||}{} \\ \multicolumn{2}{||c||}{IF Functions} \\ \multicolumn{2}{||c||}{} \\ \hline \param{r} = \cmd{IFLZ} (\param{cond}, \param{rtrue}, \param{rfalse}) & if \param{cond} $<$ 0.0, \param{rtrue} else \param{rfalse} \\ \param{r} = \cmd{IFEZ} (\param{cond}, \param{rtrue}, \param{rfalse}) & if \param{cond} $=$ 0.0, \param{rtrue} else \param{rfalse} \\ \param{r} = \cmd{IFGZ} (\param{cond}, \param{rtrue}, \param{rfalse}) & if \param{cond} $>$ 0.0, \param{rtrue} else \param{rfalse} \\ \hline \end{tabular} \end{center} \medskip \begin{center} \begin{tabular}{||l|l||} \hline \multicolumn{2}{||c||}{} \\ \multicolumn{2}{||c||}{Array $\Rightarrow$ Global Variable Functions} \\ \multicolumn{2}{||c||}{} \\ \hline \param{r} = \cmd{SUM} (\param{x}) & sum of \param{x} over all nodes or elements \\ \param{r} = \cmd{SMAX} (\param{x}) & maximum of \param{x} over all nodes or elements \\ \param{r} = \cmd{SMIN} (\param{x}) & minimum of \param{x} over all nodes or elements \\ \hline \end{tabular} \end{center} \medskip \begin{center} \begin{tabular}{||l|l||} \hline \multicolumn{2}{||c||}{} \\ \multicolumn{2}{||c||}{Envelope Functions} \\ \multicolumn{2}{||c||}{} \\ \hline \param{r} = \cmd{ENVMAX} (\param{x}) & maximum of \param{x} over all previous time steps \\ \param{r} = \cmd{ENVMIN} (\param{x}) & minimum of \param{x} over all previous time steps \\ \hline \end{tabular} \end{center}