/* * Copyright(C) 1999-2020, 2022, 2022 National Technology & Engineering Solutions * of Sandia, LLC (NTESS). Under the terms of Contract DE-NA0003525 with * NTESS, the U.S. Government retains certain rights in this software. * * See packages/seacas/LICENSE for details */ #include "defs.h" // for TRUE, FALSE #include "smalloc.h" // for sfree, smalloc #include "structs.h" // for vtx_data /* Find a maximal matching in a graph using Luby's algorithm. Assign a */ /* random value to each edge and include an edge in the matching if it */ /* has a higher value than all neighboring edges that aren't disallowed. */ /* (Use float instead of double values to save space.) */ /* THIS ROUTINE IS SLOWER THAN MAXMATCH3, AND SO PROBABLY OBSOLETE. */ int maxmatch4(struct vtx_data **graph, /* array of vtx data for graph */ int nvtxs, /* number of vertices in graph */ int nedges, /* number of edges in graph */ int *mflag, /* flag indicating vtx selected or not */ int using_ewgts) { extern int HEAVY_MATCH; /* try for heavy edges in matching? */ int *iptr; /* loops through integer arrays */ float *edgevals; /* random values for all edges */ float *evptr; /* loops through edgevals */ double maxval; /* largest edge value for a vertex */ int neighbor; /* neighbor of a vertex */ int nmerged; /* number of edges in matching */ int change; /* any new edges in matching? */ int *start; /* start of edgevals list for each vertex */ int i, j, k; /* loop counters */ double drandom(void); /* Allocate and initialize space. */ evptr = edgevals = smalloc(2 * nedges * sizeof(float)); start = smalloc((nvtxs + 2) * sizeof(int)); start[1] = 0; for (i = 1; i <= nvtxs; i++) { start[i + 1] = start[i] + graph[i]->nedges - 1; } /* Assign a random value to each edge. */ if (!using_ewgts || !HEAVY_MATCH) { /* All edges are equal. */ for (i = 1; i <= nvtxs; i++) { for (j = 1; j < graph[i]->nedges; j++) { neighbor = graph[i]->edges[j]; if (neighbor > i) { *evptr = (float)drandom(); } else { /* Look up already-generated value. */ for (k = 1; graph[neighbor]->edges[k] != i; k++) { ; } *evptr = edgevals[start[neighbor] + k - 1]; } evptr++; } } } else { /* Prefer heavy weight edges. */ for (i = 1; i <= nvtxs; i++) { for (j = 1; j < graph[i]->nedges; j++) { neighbor = graph[i]->edges[j]; if (neighbor > i) { *evptr = graph[i]->ewgts[j] * drandom(); } else { /* Look up already-generated value. */ for (k = 1; graph[neighbor]->edges[k] != i; k++) { ; } *evptr = edgevals[start[neighbor] + k - 1]; } evptr++; } } } for (iptr = mflag, i = nvtxs; i; i--) { *(++iptr) = -(nvtxs + 1); } nmerged = 0; change = TRUE; while (change) { change = FALSE; for (i = 1; i <= nvtxs; i++) { /* Find largest valued edge of each vtx */ if (mflag[i] < 0) { maxval = 0.0; k = -1; evptr = &(edgevals[start[i]]); for (j = 1; j < graph[i]->nedges; j++) { if (*evptr > maxval && mflag[graph[i]->edges[j]] < 0) { maxval = *evptr; k = j; } evptr++; } if (k == -1) { mflag[i] = 0; /* No neighbors are alive. */ } else { mflag[i] = -graph[i]->edges[k]; } } } /* If vtxs agree on largest valued edge, add to independent set. */ for (i = 1; i <= nvtxs; i++) { if (-mflag[i] > i) { if (-mflag[-mflag[i]] == i) { /* Add edge to independent set. */ nmerged++; mflag[i] = -mflag[i]; mflag[mflag[i]] = i; change = TRUE; } } } } /* Maximal independent set is indicated by corresponding pairs */ /* of positive values in the mflag array. */ for (i = 1; i <= nvtxs; i++) { if (mflag[i] < 0) { mflag[i] = 0; } } sfree(start); sfree(edgevals); return (nmerged); }