/* Listing 2 * rand_por[t].c * see * L'Ecuyer - Comm. of the ACM, Oct. 1990, vol. 33. * Numerical Recipes in C, 2nd edition, pp. 278-86 (NO CODE IS FROM HERE) * L'Ecuyer and Cote, ACM Transactions on Mathematical * Software, March 1991 * Russian peasant algorithm -- Knuth, vol. II, pp. 442-43 * Copyright(C) 1999-2020 National Technology & Engineering Solutions * of Sandia, LLC (NTESS). Under the terms of Contract DE-NA0003525 with * NTESS, the U.S. Government retains certain rights in this software. * * See packages/seacas/LICENSE for details */ #include #include #include #include #include "chaco_random.h" #define MOD 2147483647L /* modulus for generator */ #define MULT 41358L /* multiplier */ /* modulus = mult*quotient + remainder */ #define Q 51924L /* int(modulus / multiplier) */ #define R 10855L /* remainder */ #define MAX_VALUE (MOD - 1) #define EXP_VAL 1285562981L /* value for 10,000th draw */ #define IMPOSSIBLE_RAND (-1) #define STARTUP_RANDS \ 16 /* throw away this number of \ initial random numbers */ static long rand_num = IMPOSSIBLE_RAND; /* initialize random number generator with seed */ long init_rand_port(long seed) { extern long rand_num; int i; if (seed < 1 || seed > MAX_VALUE) { /* if seed out of range */ seed = get_init_rand_port(); /* get seed */ } rand_num = seed; for (i = 0; i < STARTUP_RANDS; i++) { /* and throw away */ rand_num = genr_rand_port(rand_num); } /* some initial ones */ return seed; } /* get a long initial seed for gererator assumes that rand returns a short integer */ long get_init_rand_port(void) { long seed; srand((unsigned int)time(NULL)); /* initialize system generator */ do { seed = ((long)rand()) * rand(); seed += ((long)rand()) * rand(); } while (seed > MAX_VALUE); assert(seed > 0); return seed; } /* generate the next value in sequence from generator uses approximate factoring residue = (a * x) mod modulus = a*x - [(a*x)/modulus]*modulus where [(a*x)/modulus] = integer less than or equal to (a*x)/modulus approximate factoring avoids overflow associated with a*x and uses equivalence of above with residue = a * (x - q * k) - r* k + (k-k1) * modulus where modulus = a * q + r q = [modulus/a] k = [x/q] (= [ax/aq]) k1 = [a*x/modulus] assumes a, m > 0 0 < init_rand < modulus a * a <= modulus [a*x/a*q]-[a*x/modulus] <= 1 (for only one addition of modulus below) */ long genr_rand_port(long init_rand) { long k, residue; k = init_rand / Q; residue = MULT * (init_rand - Q * k) - R * k; if (residue < 0) { residue += MOD; } assert(residue >= 1 && residue <= MAX_VALUE); return residue; } /* get a random number */ long rand_port(void) { extern long rand_num; if (rand_num == IMPOSSIBLE_RAND) { /* if not initialized, do it now */ rand_num = 1; init_rand_port(rand_num); } rand_num = genr_rand_port(rand_num); return rand_num; } /* generates a value on (0,1) with mean of .5 range of values is [1/(MAX_VALUE+1), MAX_VALUE/(MAX_VALUE+1)] to get [0,1], use (double)(rand_port()-1)/(double)(MAX_VALUE-1) */ double rand_rect_port(void) { return (double)rand_port() / (double)(MAX_VALUE + 1); } /* skip ahead in recursion residue = (a^skip * init) mod modulus Use Russian peasant algorithm */ /* calculate residue = (a * x) mod modulus for arbitrary a and x without overflow assume 0 < a < modulus and 0 < x < modulus use Russian peasant algorithm followed by approximate factoring */ #if defined(TESTING) /* Test the generator */ #include int main(void) { long seed; int i; seed = init_rand_port(1); printf("Seed for random number generator is %ld\n", seed); i = STARTUP_RANDS; /* threw away STARTUP_RANDS */ do { rand_port(); i++; } while (i < 9999); printf("On draw 10000, random number should be %ld\n", EXP_VAL); printf("On draw %d, random number is %ld\n", i + 1, rand_port()); } #endif /* TESTING */ /* End of File */