after ex_open I/O word size 8 after ex_get_init_ext(exoid, &par), error = 0 database parameters: title = 'This is a test' num_dim = 3 num_assembly = 0 num_blobs = 3 num_nodes = 0 num_edge = 0 num_face = 0 num_elem = 0 num_elem_blk = 0 num_node_sets = 0 num_side_sets = 0 after ex_get_blob(exoid, &blobs[i]), error = 0 Blob named 'Tempus' has id 100. It contains 10 entries. after ex_get_blob(exoid, &blobs[i]), error = 0 Blob named 'IOSS' has id 200. It contains 20 entries. after ex_get_blob(exoid, &blobs[i]), error = 0 Blob named 'Solver' has id 300. It contains 15 entries. after ex_get_blobs(exoid, blb), error = 0 Blob named 'Tempus' has id 100. It contains 10 entries. Blob named 'IOSS' has id 200. It contains 20 entries. Blob named 'Solver' has id 300. It contains 15 entries. Blob named 'Tempus' with id 100. It contains 2 attributes: Name: 'Scale', Type = 6, Value Count = 1 1.5 Name: 'Units', Type = 4, Value Count = 4 1 0 0 -1 Blob named 'IOSS' with id 200. It contains 1 attributes: Name: 'Offset', Type = 6, Value Count = 3 1.1 2.2 3.3 Blob named 'Solver' with id 300. It contains 2 attributes: Name: 'Dimension', Type = 2, Value Count = 7 l e n g t h Name: 'Offset', Type = 6, Value Count = 3 1.1 2.2 3.3 GLOBAL contains 1 attributes: Name: 'SOLID_MODEL', Type = 2, Value Count = 24 after ex_get_reduction_variable_param(exoid, EX_BLOB, &num_red_vars), error = 0 after ex_get_variable_param(exoid, EX_BLOB, &num_vars), error = 0 after ex_get_reduction_variable_names(exoid, EX_BLOB, num_red_vars, var_names), error = 0 There are 4 blob reduction variables; their names are : 'Momentum_X' 'Momentum_Y' 'Momentum_Z' 'Kinetic_Energy' after ex_get_variable_names(exoid, EX_BLOB, num_vars, var_names), error = 0 There are 3 blob variables; their names are : 'X' 'XDOT' 'XDDOT' There are 4 time steps in the database. after ex_get_time(exoid, i + 1, &time_value), error = 0 Time at step 1 is 0.010000. after ex_get_reduction_vars(exoid, i + 1, EX_BLOB, blb[k].id, num_red_vars, var_values), error = 0 Values for Blob 100 at step 1: 0.020000 0.030000 0.040000 0.050000 after ex_get_var(exoid, i + 1, EX_BLOB, var_idx+1, blobs[k].id, blobs[k].num_entry, vals), error = 0 0.020 1.020 2.020 3.020 4.020 5.020 6.020 7.020 8.020 9.020 after ex_get_var(exoid, i + 1, EX_BLOB, var_idx+1, blobs[k].id, blobs[k].num_entry, vals), error = 0 0.030 1.030 2.030 3.030 4.030 5.030 6.030 7.030 8.030 9.030 after ex_get_var(exoid, i + 1, EX_BLOB, var_idx+1, blobs[k].id, blobs[k].num_entry, vals), error = 0 0.040 1.040 2.040 3.040 4.040 5.040 6.040 7.040 8.040 9.040 after ex_get_reduction_vars(exoid, i + 1, EX_BLOB, blb[k].id, num_red_vars, var_values), error = 0 Values for Blob 200 at step 1: 1.020000 1.030000 1.040000 1.050000 after ex_get_var(exoid, i + 1, EX_BLOB, var_idx+1, blobs[k].id, blobs[k].num_entry, vals), error = 0 0.030 1.030 2.030 3.030 4.030 5.030 6.030 7.030 8.030 9.030 10.030 11.030 12.030 13.030 14.030 15.030 16.030 17.030 18.030 19.030 after ex_get_var(exoid, i + 1, EX_BLOB, var_idx+1, blobs[k].id, blobs[k].num_entry, vals), error = 0 0.040 1.040 2.040 3.040 4.040 5.040 6.040 7.040 8.040 9.040 10.040 11.040 12.040 13.040 14.040 15.040 16.040 17.040 18.040 19.040 after ex_get_var(exoid, i + 1, EX_BLOB, var_idx+1, blobs[k].id, blobs[k].num_entry, vals), error = 0 0.050 1.050 2.050 3.050 4.050 5.050 6.050 7.050 8.050 9.050 10.050 11.050 12.050 13.050 14.050 15.050 16.050 17.050 18.050 19.050 after ex_get_reduction_vars(exoid, i + 1, EX_BLOB, blb[k].id, num_red_vars, var_values), error = 0 Values for Blob 300 at step 1: 2.020000 2.030000 2.040000 2.050000 after ex_get_var(exoid, i + 1, EX_BLOB, var_idx+1, blobs[k].id, blobs[k].num_entry, vals), error = 0 0.040 1.040 2.040 3.040 4.040 5.040 6.040 7.040 8.040 9.040 10.040 11.040 12.040 13.040 14.040 after ex_get_var(exoid, i + 1, EX_BLOB, var_idx+1, blobs[k].id, blobs[k].num_entry, vals), error = 0 0.050 1.050 2.050 3.050 4.050 5.050 6.050 7.050 8.050 9.050 10.050 11.050 12.050 13.050 14.050 after ex_get_var(exoid, i + 1, EX_BLOB, var_idx+1, blobs[k].id, blobs[k].num_entry, vals), error = 0 0.060 1.060 2.060 3.060 4.060 5.060 6.060 7.060 8.060 9.060 10.060 11.060 12.060 13.060 14.060 after ex_get_time(exoid, i + 1, &time_value), error = 0 Time at step 2 is 0.020000. after ex_get_reduction_vars(exoid, i + 1, EX_BLOB, blb[k].id, num_red_vars, var_values), error = 0 Values for Blob 100 at step 2: 0.040000 0.060000 0.080000 0.100000 after ex_get_var(exoid, i + 1, EX_BLOB, var_idx+1, blobs[k].id, blobs[k].num_entry, vals), error = 0 0.040 1.040 2.040 3.040 4.040 5.040 6.040 7.040 8.040 9.040 after ex_get_var(exoid, i + 1, EX_BLOB, var_idx+1, blobs[k].id, blobs[k].num_entry, vals), error = 0 0.060 1.060 2.060 3.060 4.060 5.060 6.060 7.060 8.060 9.060 after ex_get_var(exoid, i + 1, EX_BLOB, var_idx+1, blobs[k].id, blobs[k].num_entry, vals), error = 0 0.080 1.080 2.080 3.080 4.080 5.080 6.080 7.080 8.080 9.080 after ex_get_reduction_vars(exoid, i + 1, EX_BLOB, blb[k].id, num_red_vars, var_values), error = 0 Values for Blob 200 at step 2: 1.040000 1.060000 1.080000 1.100000 after ex_get_var(exoid, i + 1, EX_BLOB, var_idx+1, blobs[k].id, blobs[k].num_entry, vals), error = 0 0.050 1.050 2.050 3.050 4.050 5.050 6.050 7.050 8.050 9.050 10.050 11.050 12.050 13.050 14.050 15.050 16.050 17.050 18.050 19.050 after ex_get_var(exoid, i + 1, EX_BLOB, var_idx+1, blobs[k].id, blobs[k].num_entry, vals), error = 0 0.070 1.070 2.070 3.070 4.070 5.070 6.070 7.070 8.070 9.070 10.070 11.070 12.070 13.070 14.070 15.070 16.070 17.070 18.070 19.070 after ex_get_var(exoid, i + 1, EX_BLOB, var_idx+1, blobs[k].id, blobs[k].num_entry, vals), error = 0 0.090 1.090 2.090 3.090 4.090 5.090 6.090 7.090 8.090 9.090 10.090 11.090 12.090 13.090 14.090 15.090 16.090 17.090 18.090 19.090 after ex_get_reduction_vars(exoid, i + 1, EX_BLOB, blb[k].id, num_red_vars, var_values), error = 0 Values for Blob 300 at step 2: 2.040000 2.060000 2.080000 2.100000 after ex_get_var(exoid, i + 1, EX_BLOB, var_idx+1, blobs[k].id, blobs[k].num_entry, vals), error = 0 0.060 1.060 2.060 3.060 4.060 5.060 6.060 7.060 8.060 9.060 10.060 11.060 12.060 13.060 14.060 after ex_get_var(exoid, i + 1, EX_BLOB, var_idx+1, blobs[k].id, blobs[k].num_entry, vals), error = 0 0.080 1.080 2.080 3.080 4.080 5.080 6.080 7.080 8.080 9.080 10.080 11.080 12.080 13.080 14.080 after ex_get_var(exoid, i + 1, EX_BLOB, var_idx+1, blobs[k].id, blobs[k].num_entry, vals), error = 0 0.100 1.100 2.100 3.100 4.100 5.100 6.100 7.100 8.100 9.100 10.100 11.100 12.100 13.100 14.100 after ex_get_time(exoid, i + 1, &time_value), error = 0 Time at step 3 is 0.030000. after ex_get_reduction_vars(exoid, i + 1, EX_BLOB, blb[k].id, num_red_vars, var_values), error = 0 Values for Blob 100 at step 3: 0.060000 0.090000 0.120000 0.150000 after ex_get_var(exoid, i + 1, EX_BLOB, var_idx+1, blobs[k].id, blobs[k].num_entry, vals), error = 0 0.060 1.060 2.060 3.060 4.060 5.060 6.060 7.060 8.060 9.060 after ex_get_var(exoid, i + 1, EX_BLOB, var_idx+1, blobs[k].id, blobs[k].num_entry, vals), error = 0 0.090 1.090 2.090 3.090 4.090 5.090 6.090 7.090 8.090 9.090 after ex_get_var(exoid, i + 1, EX_BLOB, var_idx+1, blobs[k].id, blobs[k].num_entry, vals), error = 0 0.120 1.120 2.120 3.120 4.120 5.120 6.120 7.120 8.120 9.120 after ex_get_reduction_vars(exoid, i + 1, EX_BLOB, blb[k].id, num_red_vars, var_values), error = 0 Values for Blob 200 at step 3: 1.060000 1.090000 1.120000 1.150000 after ex_get_var(exoid, i + 1, EX_BLOB, var_idx+1, blobs[k].id, blobs[k].num_entry, vals), error = 0 0.070 1.070 2.070 3.070 4.070 5.070 6.070 7.070 8.070 9.070 10.070 11.070 12.070 13.070 14.070 15.070 16.070 17.070 18.070 19.070 after ex_get_var(exoid, i + 1, EX_BLOB, var_idx+1, blobs[k].id, blobs[k].num_entry, vals), error = 0 0.100 1.100 2.100 3.100 4.100 5.100 6.100 7.100 8.100 9.100 10.100 11.100 12.100 13.100 14.100 15.100 16.100 17.100 18.100 19.100 after ex_get_var(exoid, i + 1, EX_BLOB, var_idx+1, blobs[k].id, blobs[k].num_entry, vals), error = 0 0.130 1.130 2.130 3.130 4.130 5.130 6.130 7.130 8.130 9.130 10.130 11.130 12.130 13.130 14.130 15.130 16.130 17.130 18.130 19.130 after ex_get_reduction_vars(exoid, i + 1, EX_BLOB, blb[k].id, num_red_vars, var_values), error = 0 Values for Blob 300 at step 3: 2.060000 2.090000 2.120000 2.150000 after ex_get_var(exoid, i + 1, EX_BLOB, var_idx+1, blobs[k].id, blobs[k].num_entry, vals), error = 0 0.080 1.080 2.080 3.080 4.080 5.080 6.080 7.080 8.080 9.080 10.080 11.080 12.080 13.080 14.080 after ex_get_var(exoid, i + 1, EX_BLOB, var_idx+1, blobs[k].id, blobs[k].num_entry, vals), error = 0 0.110 1.110 2.110 3.110 4.110 5.110 6.110 7.110 8.110 9.110 10.110 11.110 12.110 13.110 14.110 after ex_get_var(exoid, i + 1, EX_BLOB, var_idx+1, blobs[k].id, blobs[k].num_entry, vals), error = 0 0.140 1.140 2.140 3.140 4.140 5.140 6.140 7.140 8.140 9.140 10.140 11.140 12.140 13.140 14.140 after ex_get_time(exoid, i + 1, &time_value), error = 0 Time at step 4 is 0.040000. after ex_get_reduction_vars(exoid, i + 1, EX_BLOB, blb[k].id, num_red_vars, var_values), error = 0 Values for Blob 100 at step 4: 0.080000 0.120000 0.160000 0.200000 after ex_get_var(exoid, i + 1, EX_BLOB, var_idx+1, blobs[k].id, blobs[k].num_entry, vals), error = 0 0.080 1.080 2.080 3.080 4.080 5.080 6.080 7.080 8.080 9.080 after ex_get_var(exoid, i + 1, EX_BLOB, var_idx+1, blobs[k].id, blobs[k].num_entry, vals), error = 0 0.120 1.120 2.120 3.120 4.120 5.120 6.120 7.120 8.120 9.120 after ex_get_var(exoid, i + 1, EX_BLOB, var_idx+1, blobs[k].id, blobs[k].num_entry, vals), error = 0 0.160 1.160 2.160 3.160 4.160 5.160 6.160 7.160 8.160 9.160 after ex_get_reduction_vars(exoid, i + 1, EX_BLOB, blb[k].id, num_red_vars, var_values), error = 0 Values for Blob 200 at step 4: 1.080000 1.120000 1.160000 1.200000 after ex_get_var(exoid, i + 1, EX_BLOB, var_idx+1, blobs[k].id, blobs[k].num_entry, vals), error = 0 0.090 1.090 2.090 3.090 4.090 5.090 6.090 7.090 8.090 9.090 10.090 11.090 12.090 13.090 14.090 15.090 16.090 17.090 18.090 19.090 after ex_get_var(exoid, i + 1, EX_BLOB, var_idx+1, blobs[k].id, blobs[k].num_entry, vals), error = 0 0.130 1.130 2.130 3.130 4.130 5.130 6.130 7.130 8.130 9.130 10.130 11.130 12.130 13.130 14.130 15.130 16.130 17.130 18.130 19.130 after ex_get_var(exoid, i + 1, EX_BLOB, var_idx+1, blobs[k].id, blobs[k].num_entry, vals), error = 0 0.170 1.170 2.170 3.170 4.170 5.170 6.170 7.170 8.170 9.170 10.170 11.170 12.170 13.170 14.170 15.170 16.170 17.170 18.170 19.170 after ex_get_reduction_vars(exoid, i + 1, EX_BLOB, blb[k].id, num_red_vars, var_values), error = 0 Values for Blob 300 at step 4: 2.080000 2.120000 2.160000 2.200000 after ex_get_var(exoid, i + 1, EX_BLOB, var_idx+1, blobs[k].id, blobs[k].num_entry, vals), error = 0 0.100 1.100 2.100 3.100 4.100 5.100 6.100 7.100 8.100 9.100 10.100 11.100 12.100 13.100 14.100 after ex_get_var(exoid, i + 1, EX_BLOB, var_idx+1, blobs[k].id, blobs[k].num_entry, vals), error = 0 0.140 1.140 2.140 3.140 4.140 5.140 6.140 7.140 8.140 9.140 10.140 11.140 12.140 13.140 14.140 after ex_get_var(exoid, i + 1, EX_BLOB, var_idx+1, blobs[k].id, blobs[k].num_entry, vals), error = 0 0.180 1.180 2.180 3.180 4.180 5.180 6.180 7.180 8.180 9.180 10.180 11.180 12.180 13.180 14.180 after ex_close(exoid), error = 0