/** * MIT License * * Copyright (c) 2017, 2022 Thibaut Goetghebuer-Planchon * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #ifndef TSL_ROBIN_MAP_H #define TSL_ROBIN_MAP_H #include #include #include #include #include #include #include "robin_hash.h" namespace tsl { /** * Implementation of a hash map using open-addressing and the robin hood hashing * algorithm with backward shift deletion. * * For operations modifying the hash map (insert, erase, rehash, ...), the * strong exception guarantee is only guaranteed when the expression * `std::is_nothrow_swappable>\:\:value && * std::is_nothrow_move_constructible>\:\:value` is true, * otherwise if an exception is thrown during the swap or the move, the hash map * may end up in a undefined state. Per the standard a `Key` or `T` with a * noexcept copy constructor and no move constructor also satisfies the * `std::is_nothrow_move_constructible>\:\:value` criterion (and * will thus guarantee the strong exception for the map). * * When `StoreHash` is true, 32 bits of the hash are stored alongside the * values. It can improve the performance during lookups if the `KeyEqual` * function takes time (if it engenders a cache-miss for example) as we then * compare the stored hashes before comparing the keys. When * `tsl::rh::power_of_two_growth_policy` is used as `GrowthPolicy`, it may also * speed-up the rehash process as we can avoid to recalculate the hash. When it * is detected that storing the hash will not incur any memory penalty due to * alignment (i.e. `sizeof(tsl::detail_robin_hash::bucket_entry) == sizeof(tsl::detail_robin_hash::bucket_entry)`) * and `tsl::rh::power_of_two_growth_policy` is used, the hash will be stored * even if `StoreHash` is false so that we can speed-up the rehash (but it will * not be used on lookups unless `StoreHash` is true). * * `GrowthPolicy` defines how the map grows and consequently how a hash value is * mapped to a bucket. By default the map uses * `tsl::rh::power_of_two_growth_policy`. This policy keeps the number of * buckets to a power of two and uses a mask to map the hash to a bucket instead * of the slow modulo. Other growth policies are available and you may define * your own growth policy, check `tsl::rh::power_of_two_growth_policy` for the * interface. * * `std::pair` must be swappable. * * `Key` and `T` must be copy and/or move constructible. * * If the destructor of `Key` or `T` throws an exception, the behaviour of the * class is undefined. * * Iterators invalidation: * - clear, operator=, reserve, rehash: always invalidate the iterators. * - insert, emplace, emplace_hint, operator[]: if there is an effective * insert, invalidate the iterators. * - erase: always invalidate the iterators. */ template , class KeyEqual = std::equal_to, class Allocator = std::allocator>, bool StoreHash = false, class GrowthPolicy = tsl::rh::power_of_two_growth_policy<2>> class robin_map { private: template using has_is_transparent = tsl::detail_robin_hash::has_is_transparent; class KeySelect { public: using key_type = Key; const key_type &operator()(const std::pair &key_value) const noexcept { return key_value.first; } key_type &operator()(std::pair &key_value) noexcept { return key_value.first; } }; class ValueSelect { public: using value_type = T; const value_type &operator()(const std::pair &key_value) const noexcept { return key_value.second; } value_type &operator()(std::pair &key_value) noexcept { return key_value.second; } }; using ht = detail_robin_hash::robin_hash, KeySelect, ValueSelect, Hash, KeyEqual, Allocator, StoreHash, GrowthPolicy>; public: using key_type = typename ht::key_type; using mapped_type = T; using value_type = typename ht::value_type; using size_type = typename ht::size_type; using difference_type = typename ht::difference_type; using hasher = typename ht::hasher; using key_equal = typename ht::key_equal; using allocator_type = typename ht::allocator_type; using reference = typename ht::reference; using const_reference = typename ht::const_reference; using pointer = typename ht::pointer; using const_pointer = typename ht::const_pointer; using iterator = typename ht::iterator; using const_iterator = typename ht::const_iterator; public: /* * Constructors */ robin_map() : robin_map(ht::DEFAULT_INIT_BUCKETS_SIZE) {} explicit robin_map(size_type bucket_count, const Hash &hash = Hash(), const KeyEqual &equal = KeyEqual(), const Allocator &alloc = Allocator()) : m_ht(bucket_count, hash, equal, alloc) { } robin_map(size_type bucket_count, const Allocator &alloc) : robin_map(bucket_count, Hash(), KeyEqual(), alloc) { } robin_map(size_type bucket_count, const Hash &hash, const Allocator &alloc) : robin_map(bucket_count, hash, KeyEqual(), alloc) { } explicit robin_map(const Allocator &alloc) : robin_map(ht::DEFAULT_INIT_BUCKETS_SIZE, alloc) {} template robin_map(InputIt first, InputIt last, size_type bucket_count = ht::DEFAULT_INIT_BUCKETS_SIZE, const Hash &hash = Hash(), const KeyEqual &equal = KeyEqual(), const Allocator &alloc = Allocator()) : robin_map(bucket_count, hash, equal, alloc) { insert(first, last); } template robin_map(InputIt first, InputIt last, size_type bucket_count, const Allocator &alloc) : robin_map(first, last, bucket_count, Hash(), KeyEqual(), alloc) { } template robin_map(InputIt first, InputIt last, size_type bucket_count, const Hash &hash, const Allocator &alloc) : robin_map(first, last, bucket_count, hash, KeyEqual(), alloc) { } robin_map(std::initializer_list init, size_type bucket_count = ht::DEFAULT_INIT_BUCKETS_SIZE, const Hash &hash = Hash(), const KeyEqual &equal = KeyEqual(), const Allocator &alloc = Allocator()) : robin_map(init.begin(), init.end(), bucket_count, hash, equal, alloc) { } robin_map(std::initializer_list init, size_type bucket_count, const Allocator &alloc) : robin_map(init.begin(), init.end(), bucket_count, Hash(), KeyEqual(), alloc) { } robin_map(std::initializer_list init, size_type bucket_count, const Hash &hash, const Allocator &alloc) : robin_map(init.begin(), init.end(), bucket_count, hash, KeyEqual(), alloc) { } robin_map &operator=(std::initializer_list ilist) { m_ht.clear(); m_ht.reserve(ilist.size()); m_ht.insert(ilist.begin(), ilist.end()); return *this; } allocator_type get_allocator() const { return m_ht.get_allocator(); } /* * Iterators */ iterator begin() noexcept { return m_ht.begin(); } const_iterator begin() const noexcept { return m_ht.begin(); } const_iterator cbegin() const noexcept { return m_ht.cbegin(); } iterator end() noexcept { return m_ht.end(); } const_iterator end() const noexcept { return m_ht.end(); } const_iterator cend() const noexcept { return m_ht.cend(); } /* * Capacity */ bool empty() const noexcept { return m_ht.empty(); } size_type size() const noexcept { return m_ht.size(); } size_type max_size() const noexcept { return m_ht.max_size(); } /* * Modifiers */ void clear() noexcept { m_ht.clear(); } std::pair insert(const value_type &value) { return m_ht.insert(value); } template ::value>::type * = nullptr> std::pair insert(P &&value) { return m_ht.emplace(std::forward

(value)); } std::pair insert(value_type &&value) { return m_ht.insert(std::move(value)); } iterator insert(const_iterator hint, const value_type &value) { return m_ht.insert_hint(hint, value); } template ::value>::type * = nullptr> iterator insert(const_iterator hint, P &&value) { return m_ht.emplace_hint(hint, std::forward

(value)); } iterator insert(const_iterator hint, value_type &&value) { return m_ht.insert_hint(hint, std::move(value)); } template void insert(InputIt first, InputIt last) { m_ht.insert(first, last); } void insert(std::initializer_list ilist) { m_ht.insert(ilist.begin(), ilist.end()); } template std::pair insert_or_assign(const key_type &k, M &&obj) { return m_ht.insert_or_assign(k, std::forward(obj)); } template std::pair insert_or_assign(key_type &&k, M &&obj) { return m_ht.insert_or_assign(std::move(k), std::forward(obj)); } template iterator insert_or_assign(const_iterator hint, const key_type &k, M &&obj) { return m_ht.insert_or_assign(hint, k, std::forward(obj)); } template iterator insert_or_assign(const_iterator hint, key_type &&k, M &&obj) { return m_ht.insert_or_assign(hint, std::move(k), std::forward(obj)); } /** * Due to the way elements are stored, emplace will need to move or copy the * key-value once. The method is equivalent to * insert(value_type(std::forward(args)...)); * * Mainly here for compatibility with the std::unordered_map interface. */ template std::pair emplace(Args &&...args) { return m_ht.emplace(std::forward(args)...); } /** * Due to the way elements are stored, emplace_hint will need to move or copy * the key-value once. The method is equivalent to insert(hint, * value_type(std::forward(args)...)); * * Mainly here for compatibility with the std::unordered_map interface. */ template iterator emplace_hint(const_iterator hint, Args &&...args) { return m_ht.emplace_hint(hint, std::forward(args)...); } template std::pair try_emplace(const key_type &k, Args &&...args) { return m_ht.try_emplace(k, std::forward(args)...); } template std::pair try_emplace(key_type &&k, Args &&...args) { return m_ht.try_emplace(std::move(k), std::forward(args)...); } template iterator try_emplace(const_iterator hint, const key_type &k, Args &&...args) { return m_ht.try_emplace_hint(hint, k, std::forward(args)...); } template iterator try_emplace(const_iterator hint, key_type &&k, Args &&...args) { return m_ht.try_emplace_hint(hint, std::move(k), std::forward(args)...); } iterator erase(iterator pos) { return m_ht.erase(pos); } iterator erase(const_iterator pos) { return m_ht.erase(pos); } iterator erase(const_iterator first, const_iterator last) { return m_ht.erase(first, last); } size_type erase(const key_type &key) { return m_ht.erase(key); } /** * Use the hash value 'precalculated_hash' instead of hashing the key. The * hash value should be the same as hash_function()(key). Useful to speed-up * the lookup to the value if you already have the hash. */ size_type erase(const key_type &key, std::size_t precalculated_hash) { return m_ht.erase(key, precalculated_hash); } /** * This overload only participates in the overload resolution if the typedef * KeyEqual::is_transparent exists. If so, K must be hashable and comparable * to Key. */ template ::value>::type * = nullptr> size_type erase(const K &key) { return m_ht.erase(key); } /** * Use the hash value 'precalculated_hash' instead of hashing the key. The * hash value should be the same as hash_function()(key). Useful to speed-up * the lookup to the value if you already have the hash. */ template ::value>::type * = nullptr> size_type erase(const K &key, std::size_t precalculated_hash) { return m_ht.erase(key, precalculated_hash); } void swap(robin_map &other) { other.m_ht.swap(m_ht); } /* * Lookup */ T &at(const Key &key) { return m_ht.at(key); } /** * Use the hash value 'precalculated_hash' instead of hashing the key. The * hash value should be the same as hash_function()(key). Useful to speed-up * the lookup if you already have the hash. */ T &at(const Key &key, std::size_t precalculated_hash) { return m_ht.at(key, precalculated_hash); } const T &at(const Key &key) const { return m_ht.at(key); } /** */ const T &at(const Key &key, std::size_t precalculated_hash) const { return m_ht.at(key, precalculated_hash); } /** * This overload only participates in the overload resolution if the typedef * KeyEqual::is_transparent exists. If so, K must be hashable and comparable * to Key. */ template ::value>::type * = nullptr> T &at(const K &key) { return m_ht.at(key); } /** * Use the hash value 'precalculated_hash' instead of hashing the key. The * hash value should be the same as hash_function()(key). Useful to speed-up * the lookup if you already have the hash. */ template ::value>::type * = nullptr> T &at(const K &key, std::size_t precalculated_hash) { return m_ht.at(key, precalculated_hash); } /** */ template ::value>::type * = nullptr> const T &at(const K &key) const { return m_ht.at(key); } /** */ template ::value>::type * = nullptr> const T &at(const K &key, std::size_t precalculated_hash) const { return m_ht.at(key, precalculated_hash); } T &operator[](const Key &key) { return m_ht[key]; } T &operator[](Key &&key) { return m_ht[std::move(key)]; } size_type count(const Key &key) const { return m_ht.count(key); } /** * Use the hash value 'precalculated_hash' instead of hashing the key. The * hash value should be the same as hash_function()(key). Useful to speed-up * the lookup if you already have the hash. */ size_type count(const Key &key, std::size_t precalculated_hash) const { return m_ht.count(key, precalculated_hash); } /** * This overload only participates in the overload resolution if the typedef * KeyEqual::is_transparent exists. If so, K must be hashable and comparable * to Key. */ template ::value>::type * = nullptr> size_type count(const K &key) const { return m_ht.count(key); } /** * Use the hash value 'precalculated_hash' instead of hashing the key. The * hash value should be the same as hash_function()(key). Useful to speed-up * the lookup if you already have the hash. */ template ::value>::type * = nullptr> size_type count(const K &key, std::size_t precalculated_hash) const { return m_ht.count(key, precalculated_hash); } iterator find(const Key &key) { return m_ht.find(key); } /** * Use the hash value 'precalculated_hash' instead of hashing the key. The * hash value should be the same as hash_function()(key). Useful to speed-up * the lookup if you already have the hash. */ iterator find(const Key &key, std::size_t precalculated_hash) { return m_ht.find(key, precalculated_hash); } const_iterator find(const Key &key) const { return m_ht.find(key); } /** */ const_iterator find(const Key &key, std::size_t precalculated_hash) const { return m_ht.find(key, precalculated_hash); } /** * This overload only participates in the overload resolution if the typedef * KeyEqual::is_transparent exists. If so, K must be hashable and comparable * to Key. */ template ::value>::type * = nullptr> iterator find(const K &key) { return m_ht.find(key); } /** * Use the hash value 'precalculated_hash' instead of hashing the key. The * hash value should be the same as hash_function()(key). Useful to speed-up * the lookup if you already have the hash. */ template ::value>::type * = nullptr> iterator find(const K &key, std::size_t precalculated_hash) { return m_ht.find(key, precalculated_hash); } /** */ template ::value>::type * = nullptr> const_iterator find(const K &key) const { return m_ht.find(key); } /** * Use the hash value 'precalculated_hash' instead of hashing the key. The * hash value should be the same as hash_function()(key). Useful to speed-up * the lookup if you already have the hash. */ template ::value>::type * = nullptr> const_iterator find(const K &key, std::size_t precalculated_hash) const { return m_ht.find(key, precalculated_hash); } bool contains(const Key &key) const { return m_ht.contains(key); } /** * Use the hash value 'precalculated_hash' instead of hashing the key. The * hash value should be the same as hash_function()(key). Useful to speed-up * the lookup if you already have the hash. */ bool contains(const Key &key, std::size_t precalculated_hash) const { return m_ht.contains(key, precalculated_hash); } /** * This overload only participates in the overload resolution if the typedef * KeyEqual::is_transparent exists. If so, K must be hashable and comparable * to Key. */ template ::value>::type * = nullptr> bool contains(const K &key) const { return m_ht.contains(key); } /** * Use the hash value 'precalculated_hash' instead of hashing the key. The * hash value should be the same as hash_function()(key). Useful to speed-up * the lookup if you already have the hash. */ template ::value>::type * = nullptr> bool contains(const K &key, std::size_t precalculated_hash) const { return m_ht.contains(key, precalculated_hash); } std::pair equal_range(const Key &key) { return m_ht.equal_range(key); } /** * Use the hash value 'precalculated_hash' instead of hashing the key. The * hash value should be the same as hash_function()(key). Useful to speed-up * the lookup if you already have the hash. */ std::pair equal_range(const Key &key, std::size_t precalculated_hash) { return m_ht.equal_range(key, precalculated_hash); } std::pair equal_range(const Key &key) const { return m_ht.equal_range(key); } /** */ std::pair equal_range(const Key &key, std::size_t precalculated_hash) const { return m_ht.equal_range(key, precalculated_hash); } /** * This overload only participates in the overload resolution if the typedef * KeyEqual::is_transparent exists. If so, K must be hashable and comparable * to Key. */ template ::value>::type * = nullptr> std::pair equal_range(const K &key) { return m_ht.equal_range(key); } /** * Use the hash value 'precalculated_hash' instead of hashing the key. The * hash value should be the same as hash_function()(key). Useful to speed-up * the lookup if you already have the hash. */ template ::value>::type * = nullptr> std::pair equal_range(const K &key, std::size_t precalculated_hash) { return m_ht.equal_range(key, precalculated_hash); } /** */ template ::value>::type * = nullptr> std::pair equal_range(const K &key) const { return m_ht.equal_range(key); } /** */ template ::value>::type * = nullptr> std::pair equal_range(const K &key, std::size_t precalculated_hash) const { return m_ht.equal_range(key, precalculated_hash); } /* * Bucket interface */ size_type bucket_count() const { return m_ht.bucket_count(); } size_type max_bucket_count() const { return m_ht.max_bucket_count(); } /* * Hash policy */ float load_factor() const { return m_ht.load_factor(); } float min_load_factor() const { return m_ht.min_load_factor(); } float max_load_factor() const { return m_ht.max_load_factor(); } /** * Set the `min_load_factor` to `ml`. When the `load_factor` of the map goes * below `min_load_factor` after some erase operations, the map will be * shrunk when an insertion occurs. The erase method itself never shrinks * the map. * * The default value of `min_load_factor` is 0.0f, the map never shrinks by * default. */ void min_load_factor(float ml) { m_ht.min_load_factor(ml); } void max_load_factor(float ml) { m_ht.max_load_factor(ml); } void rehash(size_type my_count) { m_ht.rehash(my_count); } void reserve(size_type my_count) { m_ht.reserve(my_count); } /* * Observers */ hasher hash_function() const { return m_ht.hash_function(); } key_equal key_eq() const { return m_ht.key_eq(); } /* * Other */ /** * Convert a const_iterator to an iterator. */ iterator mutable_iterator(const_iterator pos) { return m_ht.mutable_iterator(pos); } /** * Serialize the map through the `serializer` parameter. * * The `serializer` parameter must be a function object that supports the * following call: * - `template void operator()(const U& value);` where the types * `std::int16_t`, `std::uint32_t`, `std::uint64_t`, `float` and * `std::pair` must be supported for U. * * The implementation leaves binary compatibility (endianness, IEEE 754 for * floats, ...) of the types it serializes in the hands of the `Serializer` * function object if compatibility is required. */ template void serialize(Serializer &serializer) const { m_ht.serialize(serializer); } /** * Deserialize a previously serialized map through the `deserializer` * parameter. * * The `deserializer` parameter must be a function object that supports the * following call: * - `template U operator()();` where the types `std::int16_t`, * `std::uint32_t`, `std::uint64_t`, `float` and `std::pair` must be * supported for U. * * If the deserialized hash map type is hash compatible with the serialized * map, the deserialization process can be sped up by setting * `hash_compatible` to true. To be hash compatible, the Hash, KeyEqual and * GrowthPolicy must behave the same way than the ones used on the serialized * map and the StoreHash must have the same value. The `std::size_t` must also * be of the same size as the one on the platform used to serialize the map. * If these criteria are not met, the behaviour is undefined with * `hash_compatible` sets to true. * * The behaviour is undefined if the type `Key` and `T` of the `robin_map` are * not the same as the types used during serialization. * * The implementation leaves binary compatibility (endianness, IEEE 754 for * floats, size of int, ...) of the types it deserializes in the hands of the * `Deserializer` function object if compatibility is required. */ template static robin_map deserialize(Deserializer &deserializer, bool hash_compatible = false) { robin_map map(0); map.m_ht.deserialize(deserializer, hash_compatible); return map; } friend bool operator==(const robin_map &lhs, const robin_map &rhs) { if (lhs.size() != rhs.size()) { return false; } for (const auto &element_lhs : lhs) { const auto it_element_rhs = rhs.find(element_lhs.first); if (it_element_rhs == rhs.cend() || element_lhs.second != it_element_rhs->second) { return false; } } return true; } friend bool operator!=(const robin_map &lhs, const robin_map &rhs) { return !operator==(lhs, rhs); } friend void swap(robin_map &lhs, robin_map &rhs) { lhs.swap(rhs); } private: ht m_ht; }; /** * Same as `tsl::robin_map`. */ template , class KeyEqual = std::equal_to, class Allocator = std::allocator>, bool StoreHash = false> using robin_pg_map = robin_map; } // end namespace tsl #endif