C Copyright(C) 1999-2020 National Technology & Engineering Solutions C of Sandia, LLC (NTESS). Under the terms of Contract DE-NA0003525 with C NTESS, the U.S. Government retains certain rights in this software. C C See packages/seacas/LICENSE for details *++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ * * symmlqblas fortran * * daxpy dcopy ddot dnrm2 * *** from netlib, Thu May 16 21:00:13 EDT 1991 *** *** Declarations of the form dx(1) changed to dx(*) * *++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ *++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ subroutine daxpy(n,da,dx,incx,dy,incy) c constant times a vector plus a vector. c uses unrolled loops for increments equal to one. c jack dongarra, linpack, 3/11/78. double precision dx(*),dy(*),da integer i,incx,incy,ix,iy,m,mp1,n if(n.le.0)return if (da .eq. 0.0d0) return if(incx.eq.1.and.incy.eq.1)go to 20 c code for unequal increments or equal increments c not equal to 1 ix = 1 iy = 1 if(incx.lt.0)ix = (-n+1)*incx + 1 if(incy.lt.0)iy = (-n+1)*incy + 1 do 10 i = 1,n dy(iy) = dy(iy) + da*dx(ix) ix = ix + incx iy = iy + incy 10 continue return c code for both increments equal to 1 c clean-up loop 20 m = mod(n,4) if( m .eq. 0 ) go to 40 do 30 i = 1,m dy(i) = dy(i) + da*dx(i) 30 continue if( n .lt. 4 ) return 40 mp1 = m + 1 do 50 i = mp1,n,4 dy(i) = dy(i) + da*dx(i) dy(i + 1) = dy(i + 1) + da*dx(i + 1) dy(i + 2) = dy(i + 2) + da*dx(i + 2) dy(i + 3) = dy(i + 3) + da*dx(i + 3) 50 continue return end *++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ subroutine dcopy(n,dx,incx,dy,incy) c copies a vector, x, to a vector, y. c uses unrolled loops for increments equal to one. c jack dongarra, linpack, 3/11/78. double precision dx(*),dy(*) integer i,incx,incy,ix,iy,m,mp1,n if(n.le.0)return if(incx.eq.1.and.incy.eq.1)go to 20 c code for unequal increments or equal increments c not equal to 1 ix = 1 iy = 1 if(incx.lt.0)ix = (-n+1)*incx + 1 if(incy.lt.0)iy = (-n+1)*incy + 1 do 10 i = 1,n dy(iy) = dx(ix) ix = ix + incx iy = iy + incy 10 continue return c code for both increments equal to 1 c clean-up loop 20 m = mod(n,7) if( m .eq. 0 ) go to 40 do 30 i = 1,m dy(i) = dx(i) 30 continue if( n .lt. 7 ) return 40 mp1 = m + 1 do 50 i = mp1,n,7 dy(i) = dx(i) dy(i + 1) = dx(i + 1) dy(i + 2) = dx(i + 2) dy(i + 3) = dx(i + 3) dy(i + 4) = dx(i + 4) dy(i + 5) = dx(i + 5) dy(i + 6) = dx(i + 6) 50 continue return end *++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ double precision function ddot(n,dx,incx,dy,incy) c forms the dot product of two vectors. c uses unrolled loops for increments equal to one. c jack dongarra, linpack, 3/11/78. double precision dx(*),dy(*),dtemp integer i,incx,incy,ix,iy,m,mp1,n ddot = 0.0d0 dtemp = 0.0d0 if(n.le.0)return if(incx.eq.1.and.incy.eq.1)go to 20 c code for unequal increments or equal increments c not equal to 1 ix = 1 iy = 1 if(incx.lt.0)ix = (-n+1)*incx + 1 if(incy.lt.0)iy = (-n+1)*incy + 1 do 10 i = 1,n dtemp = dtemp + dx(ix)*dy(iy) ix = ix + incx iy = iy + incy 10 continue ddot = dtemp return c code for both increments equal to 1 c clean-up loop 20 m = mod(n,5) if( m .eq. 0 ) go to 40 do 30 i = 1,m dtemp = dtemp + dx(i)*dy(i) 30 continue if( n .lt. 5 ) go to 60 40 mp1 = m + 1 do 50 i = mp1,n,5 dtemp = dtemp + dx(i)*dy(i) + dx(i + 1)*dy(i + 1) + * dx(i + 2)*dy(i + 2) + dx(i + 3)*dy(i + 3) + dx(i + 4)*dy(i + 4) 50 continue 60 ddot = dtemp return end *++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ double precision function dnrm2 ( n, dx, incx) integer next double precision dx(*), cutlo, cuthi, hitest, sum, xmax,zero,one data zero, one /0.0d0, 1.0d0/ c euclidean norm of the n-vector stored in dx() with storage c increment incx . c if n .le. 0 return with result = 0. c if n .ge. 1 then incx must be .ge. 1 c c.l.lawson, 1978 jan 08 c four phase method using two built-in constants that are c hopefully applicable to all machines. c cutlo = maximum of dsqrt(u/eps) over all known machines. c cuthi = minimum of dsqrt(v) over all known machines. c where c eps = smallest no. such that eps + 1. .gt. 1. c u = smallest positive no. (underflow limit) c v = largest no. (overflow limit) c brief outline of algorithm.. c phase 1 scans zero components. c move to phase 2 when a component is nonzero and .le. cutlo c move to phase 3 when a component is .gt. cutlo c move to phase 4 when a component is .ge. cuthi/m c where m = n for x() real and m = 2*n for complex. c values for cutlo and cuthi.. c from the environmental parameters listed in the imsl converter c document the limiting values are as follows.. c cutlo, s.p. u/eps = 2**(-102) for honeywell. close seconds are c univac and dec at 2**(-103) c thus cutlo = 2**(-51) = 4.44089e-16 c cuthi, s.p. v = 2**127 for univac, honeywell, and dec. c thus cuthi = 2**(63.5) = 1.30438e19 c cutlo, d.p. u/eps = 2**(-67) for honeywell and dec. c thus cutlo = 2**(-33.5) = 8.23181d-11 c cuthi, d.p. same as s.p. cuthi = 1.30438d19 c data cutlo, cuthi / 8.232d-11, 1.304d19 / c data cutlo, cuthi / 4.441e-16, 1.304e19 / data cutlo, cuthi / 8.232d-11, 1.304d19 / if(n .gt. 0) go to 10 dnrm2 = zero go to 300 10 assign 30 to next sum = zero nn = n * incx c begin main loop i = 1 20 go to next,(30, 50, 70, 110) 30 if( dabs(dx(i)) .gt. cutlo) go to 85 assign 50 to next xmax = zero c phase 1. sum is zero 50 if( dx(i) .eq. zero) go to 200 if( dabs(dx(i)) .gt. cutlo) go to 85 c prepare for phase 2. assign 70 to next go to 105 c prepare for phase 4. 100 i = j assign 110 to next sum = (sum / dx(i)) / dx(i) 105 xmax = dabs(dx(i)) go to 115 c phase 2. sum is small. c scale to avoid destructive underflow. 70 if( dabs(dx(i)) .gt. cutlo ) go to 75 c common code for phases 2 and 4. c in phase 4 sum is large. scale to avoid overflow. 110 if( dabs(dx(i)) .le. xmax ) go to 115 sum = one + sum * (xmax / dx(i))**2 xmax = dabs(dx(i)) go to 200 115 sum = sum + (dx(i)/xmax)**2 go to 200 c prepare for phase 3. 75 sum = (sum * xmax) * xmax c for real or d.p. set hitest = cuthi/n c for complex set hitest = cuthi/(2*n) 85 hitest = cuthi/float( n ) c phase 3. sum is mid-range. no scaling. do 95 j =i,nn,incx if(dabs(dx(j)) .ge. hitest) go to 100 95 sum = sum + dx(j)**2 dnrm2 = dsqrt( sum ) go to 300 200 continue i = i + incx if ( i .le. nn ) go to 20 c end of main loop. c compute square root and adjust for scaling. dnrm2 = xmax * dsqrt(sum) 300 continue return end