C Copyright(C) 1999-2020 National Technology & Engineering Solutions C of Sandia, LLC (NTESS). Under the terms of Contract DE-NA0003525 with C NTESS, the U.S. Government retains certain rights in this software. C C See packages/seacas/LICENSE for details SUBROUTINE QADSRC( * NDIM, NPTS, NPSRF, NFSRF, NISR, * NRSR, NRSS, XYZE, XYZP, LS, * ISRCHR, RSRCHR, IPT, IELT, IERR ) C----------------------------------------------------------------------- C DESCRIPTION: C THIS SUBROUTINE CALCULATES THE CLOSEST POINT PROBLEM C BETWEEN 'KOUNTS' PAIRS OF POINTS AND SURFACES. C----------------------------------------------------------------------- C FORMAL PARAMETERS C MEMORY : P=PERMANENT, S=SCRATCH C NAME : IMPLICIT A-H,O-Z REAL, I-N INTEGER C TYPE : INPUT_STATUS/OUTPUT_STATUS (I=INPUT,O=OUTPUT,P=PASSED, C U=UNMODIFIED,-=UNDEFINED) C DESCRIPTION : DESCRIPTION OF VARIABLE C----------------------------------------------------------------------- C CALLING ARGUMENTS C MEMORY NAME TYPE DESCRIPTION C --- ---- --- ----------- C P NDIM I/U DIMENSION OF PROBLEM=3 C P NPTS I/U NUMBER OF POINTS TO BE SEARCHED C P NPSRF I/U NUMBER OF POINTS THAT DEFINE THE SURFACE C P NFSRF I/U NUMBER OF SURFACES C P NISR I/U NUMBER OF INTEGER SEARCH RESULTS (>=1) C P NRSR I/U NUMBER OF REAL SEARCH RESULTS (>=4) C P NRSS I/U NUMBER OF REAL SEARCH SCRATCH MEMORY (=10) C P XYZE I/U XYZ COORDS OF POINTS DEFINING ELEMENT C P XYZP I/U XYZ COORDS OF POINTS TO BE SEARCHED C P LS I/U CONNECTIVITY OF ELEMENTS (4*NFSRF), C NUMBERS REFER TO LOCATIONS IN XYZE ARRAY C P ISRCHR I/O INTEGER SEARCH RESULTS C P RSRCHR I/O REAL SEARCH RESULTS C P IPT I/U POINT PAIRED WITH SURFACE LISTED IN IELT C P IELT I/U SURFACE PAIRED WITH POINT LISTED IN IPT C----------------------------------------------------------------------- include 'amesh.blk' include 'ebbyeb.blk' include 'toldat.blk' include 'tapes.blk' C INPUT/OUTPUT ARRAYS DIMENSION * XYZP(NPTS,NDIM) ,XYZE(NPSRF,NDIM) ,LS(NELNDA,NFSRF) , * ISRCHR(NISR,NPTS) ,RSRCHR(NRSR,NPTS) DIMENSION XX(27), YY(27), ZZ(27) IF( NISR .LT. 1 .OR. NRSR .LT. 3 .OR. NRSS .LT. 10 )THEN IERR = 1 RETURN ENDIF C check for Mesh-B point coincident with node of element in Mesh-A SIDE1 = (XYZE(LS(1,IELT),1)-XYZE(LS(2,IELT),1))**2 & + (XYZE(LS(1,IELT),2)-XYZE(LS(2,IELT),2))**2 SIDE2 = (XYZE(LS(2,IELT),1)-XYZE(LS(3,IELT),1))**2 & + (XYZE(LS(2,IELT),2)-XYZE(LS(3,IELT),2))**2 SIDE3 = (XYZE(LS(3,IELT),1)-XYZE(LS(4,IELT),1))**2 & + (XYZE(LS(3,IELT),2)-XYZE(LS(4,IELT),2))**2 SIDE4 = (XYZE(LS(4,IELT),1)-XYZE(LS(1,IELT),1))**2 & + (XYZE(LS(4,IELT),2)-XYZE(LS(1,IELT),2))**2 SIDMIN = MIN(SIDE1,SIDE2,SIDE3,SIDE4) SIDMAX = MAX(SIDE1,SIDE2,SIDE3,SIDE4) COTEST = EPS*EPS*SIDMIN DO 110 I = 1, 4 A = XYZE(LS(I,IELT),1) - XYZP(IPT,1) B = XYZE(LS(I,IELT),2) - XYZP(IPT,2) DIST = A**2+B**2 IF (DIST .LT. COTEST)THEN C coincident node, so fill search results arrays C no need to check for better search result INODE = I ISRCHR(1,IPT) = IELT CALL NODE (3,INODE,RSRCHR(1,IPT),RSRCHR(2,IPT), & RSRCHR(3,IPT)) GO TO 100 END IF 110 CONTINUE C Mesh-B point not coincident with Mesh-A node so compute isoparametric C coordinates. Use Newton's method SG = 0. TG = 0. RG = 0. ITER = 0 C Build Jacobian and invert DO 120 I = 1, NELNDA XX(I) = XYZE(LS(I,IELT),1) YY(I) = XYZE(LS(I,IELT),2) ZZ(I) = 0. 120 CONTINUE 130 CONTINUE CALL JACOBN (ITYPE,XX,YY,ZZ,SG,TG,RG,A11,A12,A13,A21,A22,A23, & A31,A32,A33,F1,F2,F3) DETA = A11*A22 - A12*A21 IF (ABS(DETA) .GT. 1.E-25)THEN AI11 = A22/DETA AI12 = -A12/DETA AI21 = -A21/DETA AI22 = A11/DETA FS = F1 - XYZP(IPT,1) FT = F2 - XYZP(IPT,2) SNEW = SG - (AI11*FS + AI12*FT) TNEW = TG - (AI21*FS + AI22*FT) ITER = ITER + 1 DS = ABS(SNEW-SG) DT = ABS(TNEW-TG) IF (DS .LT. TOL .AND. DT .LT. TOL) GO TO 300 SG = SNEW TG = TNEW IF (ITER .EQ. ITERMX)GO TO 100 GO TO 130 ELSE C Zero Jacobian - check for degenerate quad (triangular element) TRITST = EPS*EPS*SIDMAX IF (SIDE1 .LT. TRITST)THEN XX(1) = XYZE(LS(1,IELT),1) XX(2) = XYZE(LS(3,IELT),1) XX(3) = XYZE(LS(4,IELT),1) YY(1) = XYZE(LS(1,IELT),2) YY(2) = XYZE(LS(3,IELT),2) YY(3) = XYZE(LS(4,IELT),2) ELSE IF (SIDE2 .LT. TRITST)THEN XX(1) = XYZE(LS(1,IELT),1) XX(2) = XYZE(LS(2,IELT),1) XX(3) = XYZE(LS(4,IELT),1) YY(1) = XYZE(LS(1,IELT),2) YY(2) = XYZE(LS(2,IELT),2) YY(3) = XYZE(LS(4,IELT),2) ELSE IF (SIDE3 .LT. TRITST)THEN XX(1) = XYZE(LS(1,IELT),1) XX(2) = XYZE(LS(2,IELT),1) XX(3) = XYZE(LS(3,IELT),1) YY(1) = XYZE(LS(1,IELT),2) YY(2) = XYZE(LS(2,IELT),2) YY(3) = XYZE(LS(3,IELT),2) ELSE IF (SIDE4 .LT. TRITST)THEN XX(1) = XYZE(LS(2,IELT),1) XX(2) = XYZE(LS(3,IELT),1) XX(3) = XYZE(LS(4,IELT),1) YY(1) = XYZE(LS(2,IELT),2) YY(2) = XYZE(LS(3,IELT),2) YY(3) = XYZE(LS(4,IELT),2) ELSE CALL ERROR ('QADSRC', & 'ZERO JACOBIAN FOUND DURING NEWTON ITERATION', & 'MESH-A ELEMENT',IELT, & 'ELEMENT IS NOT A DEGENERATE QUAD - GIVING UP', & 0,' ',' ',0) GO TO 100 END IF C Process as triangle 210 CONTINUE CALL JACOBN (1,XX,YY,ZZ,SG,TG,RG,A11,A12,A13,A21,A22,A23, & A31,A32,A33,F1,F2,F3) DETA = A11*A22 - A12*A21 IF (ABS(DETA) .LT. 1.E-25)THEN CALL ERROR ('SRCHQ', & 'ZERO JACOBIAN FOUND DURING NEWTON ITERATION', & 'MESH-A ELEMENT',IELT, & 'TRYING TO PROCESS AS A DEGENERATE QUAD (TRIANGLE)', & 0,' ',' ',0) END IF AI11 = A22/DETA AI12 = -A12/DETA AI21 = -A21/DETA AI22 = A11/DETA FS = F1 - XYZP(IPT,1) FT = F2 - XYZP(IPT,2) SNEW = SG - (AI11*FS + AI12*FT) TNEW = TG - (AI21*FS + AI22*FT) ITER = ITER + 1 DS = ABS(SNEW-SG) DT = ABS(TNEW-TG) IF (DS .LT. TOL .AND. DT .LT. TOL) GO TO 300 SG = SNEW TG = TNEW IF (ITER .EQ. ITERMX)GO TO 100 GO TO 210 END IF 300 CONTINUE C Newton converged, load up search results arrays if appropriate IF (ABS(SNEW) .LT. STRLMT .AND. ABS(TNEW) .LT. STRLMT)THEN C Search was adequate FTEST = MAX(ABS(RSRCHR(1,IPT)),ABS(RSRCHR(2,IPT))) FCOMP = MAX(ABS(SNEW),ABS(TNEW)) IF (FTEST .GT. FCOMP .OR. ISRCHR(1,IPT) .EQ. 0)THEN C New search is better, replace search results ISRCHR(1,IPT) = IELT RSRCHR(1,IPT) = SNEW RSRCHR(2,IPT) = TNEW RSRCHR(3,IPT) = 0. END IF END IF 100 CONTINUE RETURN END