Cloned SEACAS for EXODUS library with extra build files for internal package management.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

311 lines
9.6 KiB

C Copyright(C) 1999-2020 National Technology & Engineering Solutions
C of Sandia, LLC (NTESS). Under the terms of Contract DE-NA0003525 with
C NTESS, the U.S. Government retains certain rights in this software.
C
C See packages/seacas/LICENSE for details
C=======================================================================
SUBROUTINE SPLXYZ (XN, YN, XN3, YN3, ZN3, IXNP, NRNP, ZCORD,
& NSPL1, NSPL2, RSA, ZSA, ZS2A, DISTA, SCRA,
& RSB, ZSB, ZS2B, DISTB, SCRB, SLLFT, SLRGT, RDTHET,
& SWEEP, NOSCAL)
C=======================================================================
C --*** SPLXYZ *** (GEN3D) Calculate 3D coordinates for Double-surface
C Spline projection
C -- Written by Greg Sjaardema - 01/08/90
C --
C --SPLXYZ calculates the coordinate array for the 3D spline translations.
C --
C --Parameters:
C -- XN, YN - IN - the 2D coordinates, destroyed
C -- XN3, YN3, ZN3 - OUT - the 3D coordinates
C -- IXNP - IN - the new index for each node
C -- NRNP - IN - the number of new nodes generated for each node
C -- ZCORD - SCRATCH - size = NNREPL, holds z coordinate for transformations
C --
C --Common Variables:
C -- Uses NDIM, NUMNP of /DBNUMS/
C -- Uses NDIM3, NUMNP3 of /DBNUM3/
C -- Uses DOTRAN, NNREPL, DIM3, NRTRAN, D3TRAN, ZGRAD,
C -- CENTER, NUMCOL, NUMROW of /PARAMS/
INCLUDE 'g3_dbnums.blk'
INCLUDE 'g3_dbnum3.blk'
INCLUDE 'g3_params.blk'
PARAMETER (BINGO = 1.0E38)
PARAMETER (TOLER = 1.0E-8)
INTEGER XSWEEP, YSWEEP, SPHERI, SWEEP
PARAMETER (XSWEEP = 10)
PARAMETER (YSWEEP = 1)
PARAMETER (SPHERI = 11)
REAL XN(NUMNP), YN(NUMNP),
& XN3(NUMNP3), YN3(NUMNP3), ZN3(NUMNP3)
INTEGER IXNP(*), NRNP(*)
REAL ZCORD(NNREPL)
REAL RSA(NSPL1), ZSA(NSPL1), ZS2A(NSPL1), DISTA(NSPL1),
& SCRA(NSPL1)
REAL RSB(NSPL2), ZSB(NSPL2), ZS2B(NSPL2), DISTB(NSPL2),
& SCRB(NSPL2)
REAL SLLFT(2), SLRGT(2)
LOGICAL RDTHET, NOSCAL
PI = ATAN2(0.0, -1.0)
xb = 0.0
xt = 0.0
yb = 0.0
yt = 0.0
C ... Check for valid options...
IF (RDTHET .AND. NOSCAL) THEN
CALL PRTERR('ERROR', 'Cannot use NOSCALE with ANGULAR spline')
RETURN
END IF
C ... CALCULATE THE THICKNESS INCREMENT FOR EACH TRANSLATION
IBLK = 0
ZTOT = 0.0
1 CONTINUE
IBLK = IBLK + 1
IF (NRTRAN(IBLK) .GT. 0) THEN
ZTOT = ZTOT + D3TRAN(IBLK)
IF (IBLK .LT. MAXINT) GO TO 1
END IF
NXTNR = 1
IBLK = 0
ZEND = 0.0
2 CONTINUE
IBLK = IBLK + 1
IF (NRTRAN(IBLK) .GT. 0) THEN
ZBEG = ZEND
ZEND = ZBEG + D3TRAN(IBLK)
CALL INIGRD (ZBEG/ZTOT, ZEND/ZTOT, ZGRAD(IBLK),
* NRTRAN(IBLK), NRTRAN(IBLK)+1, ZCORD(NXTNR) )
NXTNR = NXTNR + NRTRAN(IBLK)
IF (IBLK .LT. MAXINT) GO TO 2
END IF
C ... Convert angles from degrees to radians
IF (RDTHET) THEN
DO 10 IPT = 1, NSPL1
RSA(IPT) = RSA(IPT) * PI / 180.0
10 CONTINUE
DO 20 IPT = 1, NSPL2
RSB(IPT) = RSB(IPT) * PI / 180.0
20 CONTINUE
END IF
CALL SPLINE (RSA, ZSA, NSPL1, SLLFT(1), SLRGT(1), ZS2A, SCRA)
CALL SPLINE (RSB, ZSB, NSPL2, SLLFT(2), SLRGT(2), ZS2B, SCRB)
C ... Calculate approximate distance along curve. Distance is computed
C as the straight line distance of the segments. Accurate for
C smooth curves; bad for non-smooth curves.
C ... If 'NOSCALE' is set, then the spline must be linear and
C we use the input RSA values for the distance.
IF (NOSCAL) THEN
DO 22 IPT = 1, NSPL1
DISTA(IPT) = RSA(IPT)
22 CONTINUE
DO 24 IPT = 1, NSPL2
DISTB(IPT) = RSB(IPT)
24 CONTINUE
ELSE
IF (RDTHET) THEN
DISTA(1) = ZSA(1) * SIN(RSA(1))
DISTB(1) = ZSB(1) * SIN(RSB(1))
DO 30 IPT = 2, NSPL1
DISTA(IPT) = DISTA(IPT-1) + SQRT(
& (ZSA(IPT) * SIN(RSA(IPT)) -
& ZSA(IPT-1) * SIN(RSA(IPT-1)))**2 +
& (ZSA(IPT) * COS(RSA(IPT)) -
& ZSA(IPT-1) * COS(RSA(IPT-1)))**2)
30 CONTINUE
DO 40 IPT = 2, NSPL2
DISTB(IPT) = DISTB(IPT-1) + SQRT(
& (ZSB(IPT) * SIN(RSB(IPT)) -
& ZSB(IPT-1) * SIN(RSB(IPT-1)))**2 +
& (ZSB(IPT) * COS(RSB(IPT)) -
& ZSB(IPT-1) * COS(RSB(IPT-1)))**2)
40 CONTINUE
ELSE
DISTA(1) = RSA(1)
DO 50 IPT = 2, NSPL1
DISTA(IPT) = SQRT( (RSA(IPT-1) - RSA(IPT))**2 +
& (ZSA(IPT-1) - ZSA(IPT))**2 ) + DISTA(IPT-1)
50 CONTINUE
DISTB(1) = RSB(1)
DO 60 IPT = 2, NSPL2
DISTB(IPT) = SQRT( (RSB(IPT-1) - RSB(IPT))**2 +
& (ZSB(IPT-1) - ZSB(IPT))**2 ) + DISTB(IPT-1)
60 CONTINUE
END IF
END IF
C... Determine maximum radius of mesh
RMAX = 0.0
RMIN = BINGO
IF (SWEEP .EQ. SPHERI) THEN
DO 80 INP = 1, NUMNP
DX = XN(INP)
DY = YN(INP)
RMIN = MIN (RMIN, (DX**2 + DY**2))
RMAX = MAX (RMAX, (DX**2 + DY**2))
80 CONTINUE
RMAX = SQRT(RMAX)
RMIN = SQRT(RMIN)
ELSE IF (SWEEP .EQ. XSWEEP) THEN
DO 82 INP = 1, NUMNP
DY = YN(INP)
RMIN = MIN (RMIN, DY)
RMAX = MAX (RMAX, DY)
82 CONTINUE
ELSE IF (SWEEP .EQ. YSWEEP) THEN
DO 84 INP = 1, NUMNP
DX = XN(INP)
RMIN = MIN (RMIN, DX)
RMAX = MAX (RMAX, DX)
84 CONTINUE
END IF
C... If there is not a node at 0,0 - RMIN will not equal zero, therefore,
C we assume that if the spline starts at zero, the mesh also starts
C at zero.
IF (DISTA(1) .EQ. 0.0 .OR. DISTB(1) .EQ. 0.0) THEN
RMIN = 0.0
END IF
IF (NOSCAL) THEN
PROPA = 1.0
PROPB = 1.0
ELSE
PROPA = (DISTA(NSPL1) - DISTA(1)) / (RMAX - RMIN)
PROPB = (DISTB(NSPL2) - DISTB(1)) / (RMAX - RMIN)
END IF
C ... Echo spline data
WRITE (*,*) ' '
WRITE (*,70) 'top spline', DISTA(NSPL1), PROPA
WRITE (*,70) 'bottom spline',DISTB(NSPL2), PROPB
70 FORMAT (' Total length of ',A,T32,' = ',1PE12.5,
& ', Proportion = ',1PE12.5)
KLOA = 1
KLOB = 1
DO 100 INP = 1, NUMNP
JNP0 = IXNP(INP) - 1
DX = XN(INP)
DY = YN(INP)
RAD = 0.0
IF (SWEEP .EQ. SPHERI) THEN
RAD = SQRT (DX**2 + DY**2)
ELSE IF (SWEEP .EQ. XSWEEP) THEN
RAD = DY
ELSE IF (SWEEP .EQ. YSWEEP) THEN
RAD = DX
END IF
RADA = DISTA(1) + PROPA * (RAD - RMIN)
RADB = DISTB(1) + PROPB * (RAD - RMIN)
C ... Determine segment containing point and proportion within segment
C Assume last segment was close to this segment and start search
C there.
CALL HUNT (DISTA, NSPL1, RADA, KLOA)
KLOA = MIN(NSPL1-1, MAX(1, KLOA))
CALL HUNT (DISTB, NSPL2, RADB, KLOB)
KLOB = MIN(NSPL2-1, MAX(1, KLOB))
C ... We want to map the X-Y plane onto the spline surface without
C stretching. Therefore, calculate a new radius RNEW which is
C the distance from the Z axis to the point on the spline such
C that the arc length from R=0 to R=RAD is the distance RNEW.
C The new X and Y coordinates corresponding to RNEW are calculated
C as the proportion of RNEW / RAD. FIXR is added to RAD in case
C RAD is 0; FIXR = 1 iff RAD = 0, else FIXR = 0
IF (RAD .EQ. 0.0) THEN
FIXR = 1.0
ELSE
FIXR = 0.0
END IF
C FIXR = SIGN(0.5, RAD) + SIGN(0.5, -RAD)
PROP = (RADA - DISTA(KLOA)) / (DISTA(KLOA+1) - DISTA(KLOA))
RNEWA = RSA(KLOA) + PROP * (RSA(KLOA+1) - RSA(KLOA))
PROP = (RADB - DISTB(KLOB)) / (DISTB(KLOB+1) - DISTB(KLOB))
RNEWB = RSB(KLOB) + PROP * (RSB(KLOB+1) - RSB(KLOB))
H = RSA(KLOA+1) - RSA(KLOA)
A = (RSA(KLOA+1)-RNEWA) / H
B = (RNEWA-RSA(KLOA)) / H
ZT = A * ZSA(KLOA) + B * ZSA(KLOA+1) +
* ((A**3-A) * ZS2A(KLOA)+(B**3-B) * ZS2A(KLOA+1)) * (H**2)/6.
H = RSB(KLOB+1) - RSB(KLOB)
A = (RSB(KLOB+1)-RNEWB) / H
B = (RNEWB-RSB(KLOB)) / H
ZB = A * ZSB(KLOB) + B * ZSB(KLOB+1) +
* ((A**3-A) * ZS2B(KLOB)+(B**3-B) * ZS2B(KLOB+1)) * (H**2)/6.
IF (RDTHET) THEN
RSAV = RNEWA
ZSAV = ZT
ZT = ZSAV * COS(RSAV)
RNEWA = ZSAV * SIN(RSAV)
RSAV = RNEWB
ZSAV = ZB
ZB = ZSAV * COS(RSAV)
RNEWB = ZSAV * SIN(RSAV)
END IF
IF (SWEEP .EQ. SPHERI) THEN
C ... Spherical Sweep of Spline Surface
XT = RNEWA * DX / (RAD + FIXR)
YT = RNEWA * DY / (RAD + FIXR)
XB = RNEWB * DX / (RAD + FIXR)
YB = RNEWB * DY / (RAD + FIXR)
ELSE IF (SWEEP .EQ. XSWEEP) THEN
C ... Sweep spline along the X axis
XT = DX
YT = RNEWA * DY / (RAD + FIXR)
XB = DX
YB = RNEWB * DY / (RAD + FIXR)
ELSE IF (SWEEP .EQ. YSWEEP) THEN
C ... Sweep spline along the X axis
XT = RNEWA * DX / (RAD + FIXR)
YT = DY
XB = RNEWB * DX / (RAD + FIXR)
YB = DY
END IF
DELZ = ZT - ZB
DELX = XT - XB
DELY = YT - YB
DO 90 NR = 1, NRNP(INP)
ZN3(JNP0+NR) = ZT - DELZ * ZCORD(NR)
YN3(JNP0+NR) = YT - DELY * ZCORD(NR)
XN3(JNP0+NR) = XT - DELX * ZCORD(NR)
90 CONTINUE
100 CONTINUE
RETURN
END