Cloned SEACAS for EXODUS library with extra build files for internal package management.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

127 lines
3.9 KiB

\chapter{Summary of Functions} \label{appx:function}
\begin{center} \begin{tabular}{||l|l||}
\hline
\multicolumn{2}{||c||}{} \\
\multicolumn{2}{||c||}{Standard \caps{FORTRAN} Functions} \\
\multicolumn{2}{||c||}{} \\
\hline
\param{r} = \cmd{AINT} ($x$)
& truncation: $|x|$ \\
\param{r} = \cmd{ANINT} ($x$)
& nearest integer: [$x + .5*$sign($x$)] \\
\param{r} = \cmd{ABS} ($x$)
& absolute value: $|x|$ \\
\param{r} = \cmd{MOD} ($x$, $y$)
& remainder: $x - y * [x/y]$ \\
\param{r} = \cmd{SIGN} ($x$, $y$)
& transfer of sign: $|x|$ sign $y$ \\
\param{r} = \cmd{DIM} ($x$, $y$)
& positive difference: $x - $min($x$,$y$) \\
\param{r} = \cmd{MAX} ($x$, $y$, \ldots)
& maximum of $x$, $y$, \ldots\ \\
\param{r} = \cmd{MIN} ($x$, $y$, \ldots)
& minimum of $x$, $y$, \ldots\ \\
\param{r} = \cmd{SQRT} ($x$)
& square root: $\sqrt{x}$ \\
\param{r} = \cmd{EXP} ($x$)
& exponentiation: e$^{x}$ \\
\param{r} = \cmd{LOG} ($x$)
& natural logarithm: log$_{e}x$ \\
\param{r} = \cmd{LOG10} ($x$)
& common logarithm: log$_{10}x$ \\
\param{r} = \cmd{SIN} ($x$)
& sine $x$ \\
\param{r} = \cmd{COS} ($x$)
& cosine $x$ \\
\param{r} = \cmd{TAN} ($x$)
& tangent $x$ \\
\param{r} = \cmd{ASIN} ($x$)
& arc sine $x$ \\
\param{r} = \cmd{ACOS} ($x$)
& arc cosine $x$ \\
\param{r} = \cmd{ATAN} ($x$)
& arc tangent $x$ \\
\param{r} = \cmd{ATAN2} ($x$, $y$)
& arc tangent $x/y$ \\
\param{r} = \cmd{SINH} ($x$)
& hyperbolic sine $x$ \\
\param{r} = \cmd{COSH} ($x$)
& hyperbolic cosine $x$ \\
\param{r} = \cmd{TANH} ($x$)
& hyperbolic tangent $x$ \\
\hline
\end{tabular} \end{center}
\medskip
\begin{center} \begin{tabular}{||l|l||}
\hline
\multicolumn{2}{||c||}{} \\
\multicolumn{2}{||c||}{Tensor Principal Values and Magnitude Functions}
\\
\multicolumn{2}{||c||}{} \\
\hline
\param{r} = \cmd{PMAX}
($T_{11}$, $T_{22}$, $T_{33}$, $T_{12}$, $T_{23}$, $T_{31}$)
& maximum principal values \\
\param{r} = \cmd{PMIN}
($T_{11}$, $T_{22}$, $T_{33}$, $T_{12}$, $T_{23}$, $T_{31}$)
& minimum principal values \\
\param{r} = \cmd{PMAX2} ($T_{11}$, $T_{22}$, $T_{12}$)
& maximum principal values (2D) \\
\param{r} = \cmd{PMIN2} ($T_{11}$, $T_{22}$, $T_{12}$)
& minimum principal values (2D) \\
\param{r} = \cmd{TMAG}
($T_{11}$, $T_{22}$, $T_{33}$, $T_{12}$, $T_{23}$, $T_{31}$)
& magnitude of the deviatoric part \\
\hline
\end{tabular} \end{center}
\medskip
\begin{center} \begin{tabular}{||l|l||}
\hline
\multicolumn{2}{||c||}{} \\
\multicolumn{2}{||c||}{IF Functions} \\
\multicolumn{2}{||c||}{} \\
\hline
\param{r} = \cmd{IFLZ} (\param{cond}, \param{rtrue}, \param{rfalse})
& if \param{cond} $<$ 0.0,
\param{rtrue} else \param{rfalse} \\
\param{r} = \cmd{IFEZ} (\param{cond}, \param{rtrue}, \param{rfalse})
& if \param{cond} $=$ 0.0,
\param{rtrue} else \param{rfalse} \\
\param{r} = \cmd{IFGZ} (\param{cond}, \param{rtrue}, \param{rfalse})
& if \param{cond} $>$ 0.0,
\param{rtrue} else \param{rfalse} \\
\hline
\end{tabular} \end{center}
\medskip
\begin{center} \begin{tabular}{||l|l||}
\hline
\multicolumn{2}{||c||}{} \\
\multicolumn{2}{||c||}{Array $\Rightarrow$ Global Variable Functions} \\
\multicolumn{2}{||c||}{} \\
\hline
\param{r} = \cmd{SUM} (\param{x})
& sum of \param{x} over all nodes or elements \\
\param{r} = \cmd{SMAX} (\param{x})
& maximum of \param{x} over all nodes or elements \\
\param{r} = \cmd{SMIN} (\param{x})
& minimum of \param{x} over all nodes or elements \\
\hline
\end{tabular} \end{center}
\medskip
\begin{center} \begin{tabular}{||l|l||}
\hline
\multicolumn{2}{||c||}{} \\
\multicolumn{2}{||c||}{Envelope Functions} \\
\multicolumn{2}{||c||}{} \\
\hline
\param{r} = \cmd{ENVMAX} (\param{x})
& maximum of \param{x} over all previous time steps \\
\param{r} = \cmd{ENVMIN} (\param{x})
& minimum of \param{x} over all previous time steps \\
\hline
\end{tabular} \end{center}