Cloned SEACAS for EXODUS library with extra build files for internal package management.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

328 lines
12 KiB

// Copyright(C) 1999-2023 National Technology & Engineering Solutions
// of Sandia, LLC (NTESS). Under the terms of Contract DE-NA0003525 with
// NTESS, the U.S. Government retains certain rights in this software.
//
// See packages/seacas/LICENSE for details
#include "EJ_mapping.h"
#include "Ioss_ElementBlock.h" // for ElementBlock
#include "Ioss_GroupingEntity.h" // for GroupingEntity
#include "Ioss_NodeBlock.h" // for NodeBlock
#include "Ioss_Property.h" // for Property
#include "Ioss_Region.h" // for Region, etc
#include "Ioss_SmartAssert.h"
#include "Ioss_Sort.h"
#include <algorithm> // for sort, unique
#include <cstddef> // for size_t
#include <fmt/ostream.h>
#include <numeric>
#include <utility> // for make_pair, pair
namespace {
bool entity_is_omitted(const Ioss::GroupingEntity *block)
{
bool omitted = block->get_optional_property("omitted", 0) == 1;
return omitted;
}
} // namespace
template <typename INT>
void eliminate_omitted_nodes(RegionVector &part_mesh, std::vector<INT> &global_node_map,
std::vector<INT> &local_node_map, bool fill_global)
{
size_t offset = 0;
size_t j = 0;
size_t part_count = part_mesh.size();
for (size_t p = 0; p < part_count; p++) {
bool has_omissions = part_mesh[p]->get_property("block_omission_count").get_int() > 0;
const Ioss::NodeBlock *nb = part_mesh[p]->get_node_blocks()[0];
size_t loc_size = nb->entity_count();
if (has_omissions) {
// If there are any omitted element blocks for this part, don't
// map the nodes that are only connected to omitted element
// blocks.
std::vector<char> node_status;
nb->get_field_data("node_connectivity_status", node_status);
for (size_t i = 0; i < node_status.size(); i++) {
if (node_status[i] != 1) {
local_node_map[offset + i] = j;
if (fill_global) {
global_node_map.push_back(j + 1);
}
j++;
}
else {
local_node_map[offset + i] = -1;
}
}
}
else {
for (size_t i = 0; i < loc_size; i++) {
local_node_map[offset + i] = j;
if (fill_global) {
global_node_map.push_back(j + 1);
}
j++;
}
}
offset += loc_size;
}
}
template void eliminate_omitted_nodes(RegionVector &part_mesh, std::vector<int> &global_node_map,
std::vector<int> &local_node_map, bool fill_global);
template void eliminate_omitted_nodes(RegionVector &part_mesh,
std::vector<int64_t> &global_node_map,
std::vector<int64_t> &local_node_map, bool fill_global);
template <typename INT>
void build_reverse_node_map(Ioss::Region & /*global*/, RegionVector &part_mesh,
std::vector<INT> &global_node_map, std::vector<INT> &local_node_map)
{
// Instead of using <set> and <map>, consider using a sorted vector...
// Append all local node maps to the global node map.
// Sort the global node map
// Remove duplicates.
// Position within map is now the map...
// When building the local-part node to global id, use binary_search...
size_t part_count = part_mesh.size();
// Global node map and count.
std::vector<std::vector<int>> global_nodes(part_count);
size_t tot_size = 0;
for (size_t p = 0; p < part_count; p++) {
const Ioss::NodeBlock *nb = part_mesh[p]->get_node_blocks()[0];
size_t loc_size = nb->entity_count();
tot_size += loc_size;
global_nodes[p].resize(loc_size);
}
global_node_map.resize(tot_size);
size_t offset = 0;
bool any_omitted_nodes = false;
for (size_t p = 0; p < part_count; p++) {
const Ioss::NodeBlock *nb = part_mesh[p]->get_node_blocks()[0];
nb->get_field_data("ids", global_nodes[p]);
// If there are any omitted element blocks for this part, set
// the global id of any nodes that are only connected to omitted
// element blocks to 0.
bool has_omissions = part_mesh[p]->get_property("block_omission_count").get_int() > 0;
if (has_omissions) {
std::vector<char> node_status;
nb->get_field_data("node_connectivity_status", node_status);
for (size_t i = 0; i < node_status.size(); i++) {
if (node_status[i] == 1) {
any_omitted_nodes = true;
global_nodes[p][i] = 0;
}
}
}
std::copy(global_nodes[p].begin(), global_nodes[p].end(), &global_node_map[offset]);
offset += global_nodes[p].size();
}
// Now, sort the global_node_map array and remove duplicates...
Ioss::Utils::uniquify(global_node_map);
// If any omitted nodes, remove them from the global_node_map.
// The id will be 0
if (any_omitted_nodes) {
auto pos = std::remove(global_node_map.begin(), global_node_map.end(), 0);
global_node_map.erase(pos, global_node_map.end());
}
size_t output_node_count = global_node_map.size();
// See whether the node numbers are contiguous. If so, we can map
// the nodes back to their original location. Since the nodes are
// sorted and there are no duplicates, we just need to see if the id
// at global_node_map.size() == global_node_map.size();
size_t max_id = global_node_map[output_node_count - 1];
bool is_contiguous = max_id == output_node_count;
fmt::print("Node map {} contiguous.\n", (is_contiguous ? "is" : "is not"));
// Create the map that maps from a local part node to the
// global map. This combines the mapping local part node to
// 'global id' and then 'global id' to global position. The
// mapping is now a direct lookup instead of a lookup followed by
// a reverse map.
auto cur_pos = global_node_map.begin();
for (size_t p = 0; p < part_count; p++) {
size_t noffset = part_mesh[p]->get_property("node_offset").get_int();
size_t node_count = global_nodes[p].size();
for (size_t i = 0; i < node_count; i++) {
INT global_node = global_nodes[p][i];
if (global_node > 0) {
if (cur_pos == global_node_map.end() || *cur_pos != global_node) {
auto iter = std::lower_bound(global_node_map.begin(), global_node_map.end(), global_node);
if (iter == global_node_map.end()) {
fmt::print("{}\n", fmt::group_digits(global_node));
SMART_ASSERT(iter != global_node_map.end());
}
cur_pos = iter;
}
size_t nodal_value = cur_pos - global_node_map.begin();
local_node_map[noffset + i] = nodal_value;
++cur_pos;
}
else {
local_node_map[noffset + i] = -1;
}
}
}
// Update the nodal ids to give a unique, non-repeating set. If contiguous, then
// there is nothing to do. If not contiguous, then need to determine if there are any
// repeats (id reuse) and if so, generate a new id for the repeated uses.
if (!is_contiguous) {
bool repeat_found = false;
INT id_last = global_node_map[0];
for (size_t i = 1; i < output_node_count; i++) {
if (global_node_map[i] == id_last) {
global_node_map[i] = ++max_id;
repeat_found = true;
}
else {
id_last = global_node_map[i];
}
}
if (repeat_found) {
fmt::print("Duplicate node ids were found. Their ids have been renumbered to remove "
"duplicates.\n");
}
}
}
template void build_reverse_node_map(Ioss::Region &global, RegionVector &part_mesh,
std::vector<int> &global_node_map,
std::vector<int> &local_node_map);
template void build_reverse_node_map(Ioss::Region &global, RegionVector &part_mesh,
std::vector<int64_t> &global_node_map,
std::vector<int64_t> &local_node_map);
template <typename INT>
void build_local_element_map(RegionVector &part_mesh, std::vector<INT> &local_element_map)
{
size_t global = 0;
size_t offset = 0;
for (auto &p : part_mesh) {
const Ioss::ElementBlockContainer &ebs = p->get_element_blocks();
Ioss::ElementBlockContainer::const_iterator i = ebs.begin();
while (i != ebs.end()) {
const auto *eb = *i++;
size_t num_elem = eb->entity_count();
if (entity_is_omitted(eb)) {
// Fill local_element_map with -1 for the omitted elements.
for (size_t j = 0; j < num_elem; j++) {
local_element_map[offset + j] = -1;
}
}
else {
for (size_t j = 0; j < num_elem; j++) {
local_element_map[offset + j] = global++;
}
}
offset += num_elem;
}
}
}
template void build_local_element_map(RegionVector &part_mesh, std::vector<int> &local_element_map);
template void build_local_element_map(RegionVector &part_mesh,
std::vector<int64_t> &local_element_map);
template <typename INT>
void generate_element_ids(RegionVector &part_mesh, const std::vector<INT> &local_element_map,
std::vector<INT> &global_element_map)
{
// Follow same logic as 'build_local_element_map' to ensure elements
// are processed in same order.
// Many models do not use the element number map at all, so they
// will have a 1..numel map. If all parts have that, then we don't
// want to do any fancy duplicate removal and other processing, just
// output a 1..numel map for the output mesh... We still generate
// the global_element_map, but check whether any of the part blocks
// have a non-1..numel map...
bool has_map = false;
size_t offset = 0;
for (auto &p : part_mesh) {
const Ioss::ElementBlockContainer &ebs = p->get_element_blocks();
Ioss::ElementBlockContainer::const_iterator i = ebs.begin();
while (i != ebs.end()) {
Ioss::ElementBlock *eb = *i++;
INT num_elem = eb->entity_count();
if (!entity_is_omitted(eb)) {
std::vector<INT> part_ids;
eb->get_field_data("ids", part_ids);
if (!has_map) {
INT eb_offset = eb->get_offset();
for (INT j = 0; j < num_elem; j++) {
if (part_ids[j] != eb_offset + j + 1) {
has_map = true;
break;
}
}
}
for (INT j = 0; j < num_elem; j++) {
INT gpos = local_element_map[offset + j];
if (gpos >= 0) {
global_element_map[gpos] = part_ids[j];
}
}
}
offset += num_elem;
}
}
// Check for duplicates...
// NOTE: Used to use an indexed sort here, but if there was a
// duplicate id, it didn't really care whether part 1 or part N's
// index came first which causes really screwy element maps.
// Instead, lets sort a vector containing pairs of <id, index> where
// the index will always? increase for increasing part numbers...
if (has_map) {
std::vector<std::pair<INT, INT>> index(global_element_map.size());
for (size_t i = 0; i < index.size(); i++) {
index[i] = std::make_pair(global_element_map[i], (INT)i);
}
Ioss::sort(index.begin(), index.end());
INT max_id = index[index.size() - 1].first + 1;
size_t beg = 0;
for (size_t i = 1; i < index.size(); i++) {
if (index[beg].first == index[i].first) {
// Duplicate found... Assign it a new id greater than any
// existing id... (What happens if we exceed INT_MAX?)
global_element_map[index[i].second] = max_id++;
// Keep 'beg' the same in case multiple duplicate of this value.
}
else {
beg = i;
}
}
}
else {
INT one = 1;
std::iota(global_element_map.begin(), global_element_map.end(), one);
}
}
template void generate_element_ids(RegionVector &part_mesh,
const std::vector<int> &local_element_map,
std::vector<int> &global_element_map);
template void generate_element_ids(RegionVector &part_mesh,
const std::vector<int64_t> &local_element_map,
std::vector<int64_t> &global_element_map);