Cloned SEACAS for EXODUS library with extra build files for internal package management.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

143 lines
4.6 KiB

/*
* Copyright(C) 1999-2020 National Technology & Engineering Solutions
* of Sandia, LLC (NTESS). Under the terms of Contract DE-NA0003525 with
* NTESS, the U.S. Government retains certain rights in this software.
*
* See packages/seacas/LICENSE for details
*/
#include "smalloc.h" // for sfree, smalloc
#include "structs.h" // for vtx_data
/* Find a maximal matching in a graph using simple greedy algorithm. */
/* Randomly permute vertices, and then have each select an unmatched */
/* neighbor. */
int maxmatch3(struct vtx_data **graph, /* array of vtx data for graph */
int nvtxs, /* number of vertices in graph */
int *mflag, /* flag indicating vtx selected or not */
int using_ewgts /* are edge weights being used? */
)
{
extern int HEAVY_MATCH; /* pick heavy edges in matching? */
int *order; /* random ordering of vertices */
int *iptr, *jptr; /* loops through integer arrays */
double prob_sum; /* sum of probabilities to select from */
double val; /* random value for selecting neighbor */
float ewgt; /* edge weight */
int save; /* neighbor vertex if only one active */
int vtx; /* vertex to process next */
int neighbor; /* neighbor of a vertex */
int nmerged; /* number of edges in matching */
int i, j; /* loop counters */
double drandom(void);
void randomize(int *array, int n);
/* First, randomly permute the vertices. */
iptr = order = smalloc((nvtxs + 1) * sizeof(int));
jptr = mflag;
for (i = 1; i <= nvtxs; i++) {
*(++iptr) = i;
*(++jptr) = 0;
}
randomize(order, nvtxs);
nmerged = 0;
if (!using_ewgts || !HEAVY_MATCH) { /* All edges equal. */
for (i = 1; i <= nvtxs; i++) {
vtx = order[i];
if (mflag[vtx] == 0) { /* Not already matched. */
/* Add up sum of edge weights of neighbors. */
prob_sum = 0;
save = 0;
for (j = 1; j < graph[vtx]->nedges; j++) {
neighbor = graph[vtx]->edges[j];
if (mflag[neighbor] == 0) {
/* Set flag for single possible neighbor. */
if (prob_sum == 0) {
save = neighbor;
}
else {
save = 0;
}
prob_sum += 1.0;
}
}
if (prob_sum != 0) { /* Does vertex have contractible edges? */
nmerged++;
if (save != 0) { /* Only one neighbor, special case. */
mflag[vtx] = save;
mflag[save] = vtx;
}
else { /* Pick randomly neighbor. */
val = drandom() * prob_sum * .999999;
prob_sum = 0;
for (j = 1; !mflag[vtx]; j++) {
neighbor = graph[vtx]->edges[j];
if (mflag[neighbor] == 0) {
prob_sum += 1.0;
if (prob_sum >= val) {
mflag[vtx] = neighbor;
mflag[neighbor] = vtx;
}
}
}
}
}
}
}
}
else { /* Choose heavy edges preferentially. */
for (i = 1; i <= nvtxs; i++) {
vtx = order[i];
if (mflag[vtx] == 0) { /* Not already matched. */
/* Add up sum of edge weights of neighbors. */
prob_sum = 0;
save = 0;
for (j = 1; j < graph[vtx]->nedges; j++) {
neighbor = graph[vtx]->edges[j];
if (mflag[neighbor] == 0) {
/* Set flag for single possible neighbor. */
if (prob_sum == 0) {
save = neighbor;
}
else {
save = 0;
}
ewgt = graph[vtx]->ewgts[j];
prob_sum += ewgt;
}
}
if (prob_sum != 0) { /* Does vertex have contractible edges? */
nmerged++;
if (save != 0) { /* Only one neighbor, special case. */
mflag[vtx] = save;
mflag[save] = vtx;
}
else { /* Pick randomly neighbor, skewed by edge weights. */
val = drandom() * prob_sum * .999999;
prob_sum = 0;
for (j = 1; !mflag[vtx]; j++) {
neighbor = graph[vtx]->edges[j];
if (mflag[neighbor] == 0) {
ewgt = graph[vtx]->ewgts[j];
prob_sum += ewgt;
if (prob_sum >= val) {
mflag[vtx] = neighbor;
mflag[neighbor] = vtx;
}
}
}
}
}
}
}
}
sfree(order);
return (nmerged);
}