Cloned SEACAS for EXODUS library with extra build files for internal package management.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

142 lines
4.6 KiB

/*
* Copyright(C) 1999-2020 National Technology & Engineering Solutions
* of Sandia, LLC (NTESS). Under the terms of Contract DE-NA0003525 with
* NTESS, the U.S. Government retains certain rights in this software.
*
* See packages/seacas/LICENSE for details
*/
#include "structs.h" // for vtx_data
/* Find a maximal matching in a graph by geometrically near neighbors. */
int maxmatch5(struct vtx_data **graph, /* array of vtx data for graph */
int nvtxs, /* number of vertices in graph */
int *mflag, /* flag indicating vtx selected or not */
int igeom, /* geometric dimensionality */
float **coords /* coordinates of each vertex */
)
{
extern double DOUBLE_MAX; /* largest floating point value */
double dist; /* distance to free neighbor */
double min_dist; /* smallest distance to free neighbor */
int *jptr; /* loops through integer arrays */
int vtx; /* vertex to process next */
int neighbor; /* neighbor of a vertex */
int nmerged; /* number of edges in matching */
int jsave; /* best edge so far */
int i, j; /* loop counters */
double drandom(void);
/* Initialize mflag array. */
jptr = mflag;
for (i = 1; i <= nvtxs; i++) {
*(++jptr) = 0;
}
nmerged = 0;
/* Select random starting point in list of vertices. */
vtx = 1 + drandom() * nvtxs;
if (igeom == 1) {
for (i = nvtxs; i; i--) { /* Choose geometrically nearest neighbor */
if (mflag[vtx] == 0) { /* Not already matched. */
/* Select nearest free edge. */
jsave = 0;
min_dist = DOUBLE_MAX;
for (j = 1; j < graph[vtx]->nedges; j++) {
neighbor = graph[vtx]->edges[j];
if (mflag[neighbor] == 0) {
dist = (coords[0][vtx] - coords[0][neighbor]) * (coords[0][vtx] - coords[0][neighbor]);
if (dist < min_dist) {
jsave = j;
min_dist = dist;
}
}
}
if (jsave > 0) {
neighbor = graph[vtx]->edges[jsave];
mflag[vtx] = neighbor;
mflag[neighbor] = vtx;
nmerged++;
}
}
if (++vtx > nvtxs) {
vtx = 1;
}
}
}
else if (igeom == 2) {
for (i = nvtxs; i; i--) { /* Choose geometrically nearest neighbor */
if (mflag[vtx] == 0) { /* Not already matched. */
/* Select nearest free edge. */
jsave = 0;
min_dist = DOUBLE_MAX;
for (j = 1; j < graph[vtx]->nedges; j++) {
neighbor = graph[vtx]->edges[j];
if (mflag[neighbor] == 0) {
dist = (coords[0][vtx] - coords[0][neighbor]) * (coords[0][vtx] - coords[0][neighbor]);
if (dist < min_dist) {
dist +=
(coords[1][vtx] - coords[1][neighbor]) * (coords[1][vtx] - coords[1][neighbor]);
if (dist < min_dist) {
jsave = j;
min_dist = dist;
}
}
}
}
if (jsave > 0) {
neighbor = graph[vtx]->edges[jsave];
mflag[vtx] = neighbor;
mflag[neighbor] = vtx;
nmerged++;
}
}
if (++vtx > nvtxs) {
vtx = 1;
}
}
}
else if (igeom >= 2) {
for (i = nvtxs; i; i--) { /* Choose geometrically nearest neighbor */
if (mflag[vtx] == 0) { /* Not already matched. */
/* Select nearest free edge. */
jsave = 0;
min_dist = DOUBLE_MAX;
for (j = 1; j < graph[vtx]->nedges; j++) {
neighbor = graph[vtx]->edges[j];
if (mflag[neighbor] == 0) {
dist = (coords[0][vtx] - coords[0][neighbor]) * (coords[0][vtx] - coords[0][neighbor]);
if (dist < min_dist) {
dist +=
(coords[1][vtx] - coords[1][neighbor]) * (coords[1][vtx] - coords[1][neighbor]);
if (dist < min_dist) {
dist +=
(coords[2][vtx] - coords[2][neighbor]) * (coords[2][vtx] - coords[2][neighbor]);
if (dist < min_dist) {
jsave = j;
min_dist = dist;
}
}
}
}
}
if (jsave > 0) {
neighbor = graph[vtx]->edges[jsave];
mflag[vtx] = neighbor;
mflag[neighbor] = vtx;
nmerged++;
}
}
if (++vtx > nvtxs) {
vtx = 1;
}
}
}
return (nmerged);
}