Cloned SEACAS for EXODUS library with extra build files for internal package management.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

90 lines
2.5 KiB

/*
* Copyright(C) 1999-2020 National Technology & Engineering Solutions
* of Sandia, LLC (NTESS). Under the terms of Contract DE-NA0003525 with
* NTESS, the U.S. Government retains certain rights in this software.
*
* See packages/seacas/LICENSE for details
*/
#include "defs.h"
#include <math.h>
/* Find eigenvalues of 2x2 symmetric system by solving quadratic. */
void evals2(double H[2][2], /* symmetric matrix for eigenvalues */
double *eval1, /* smallest eigenvalue */
double *eval2 /* middle eigenvalue */
)
{
double M[2][2]; /* normalized version of matrix */
double b, c; /* coefficients of cubic equation */
double root1, root2; /* roots of quadratic */
double xmax; /* largest matrix element */
int i, j; /* loop counters */
M[0][0] = M[1][0] = M[0][1] = M[1][1] = 0.0;
xmax = 0.0;
for (i = 0; i < 2; i++) {
for (j = i; j < 2; j++) {
if (fabs(H[i][j]) > xmax) {
xmax = fabs(H[i][j]);
}
}
}
if (xmax != 0) {
for (i = 0; i < 2; i++) {
for (j = 0; j < 2; j++) {
M[i][j] = H[i][j] / xmax;
}
}
}
b = -M[0][0] - M[1][1];
c = M[0][0] * M[1][1] - M[1][0] * M[1][0];
root1 = -.5 * (b + sign(b) * sqrt(b * b - 4 * c));
root2 = c / root1;
root1 *= xmax;
root2 *= xmax;
*eval1 = min(root1, root2);
*eval2 = max(root1, root2);
}
/* Solve for eigenvector of SPD 2x2 matrix, with given eigenvalue. */
void eigenvec2(double A[2][2], /* matrix */
double eval, /* eigenvalue */
double evec[2], /* eigenvector returned */
double *res /* normalized residual */
)
{
double norm; /* norm of eigenvector */
double res1, res2; /* components of residual vector */
int i; /* loop counter */
if (fabs(A[0][0] - eval) > fabs(A[1][1] - eval)) {
evec[0] = -A[1][0];
evec[1] = A[0][0] - eval;
}
else {
evec[0] = A[1][1] - eval;
evec[1] = -A[1][0];
}
/* Normalize eigenvector and calculate a normalized eigen-residual. */
norm = sqrt(evec[0] * evec[0] + evec[1] * evec[1]);
if (norm == 0) {
evec[0] = 1;
evec[1] = 0;
norm = 1;
}
for (i = 0; i < 2; i++) {
evec[i] /= norm;
}
res1 = (A[0][0] - eval) * evec[0] + A[1][0] * evec[1];
res2 = A[1][0] * evec[0] + (A[1][1] - eval) * evec[1];
*res = sqrt(res1 * res1 + res2 * res2);
res1 = fabs(A[0][0]) + fabs(A[1][0]);
res2 = fabs(A[1][1]) + fabs(A[1][0]);
*res /= max(res1, res2);
}