Cloned SEACAS for EXODUS library with extra build files for internal package management.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

189 lines
6.5 KiB

/*
* Copyright(C) 1999-2020, 2023 National Technology & Engineering Solutions
* of Sandia, LLC (NTESS). Under the terms of Contract DE-NA0003525 with
* NTESS, the U.S. Government retains certain rights in this software.
*
* See packages/seacas/LICENSE for details
*/
#include "params.h" // for MAXSETS
#include "structs.h" // for vtx_data, bilist
#include <stdio.h> // for NULL
/* Idea:
'buckets[i][j]' is a set of buckets to sort moves from i to j.
listspace[i] is space for lists in buckets[i][j].
Loop through all nonequal pairs [i][j], taking the first element
in each list. Compare them all to find the largest allowed move.
Make that move, and save it in movelist.
*/
void bucketsorts(struct vtx_data **graph, /* graph data structure */
int nvtxs, /* number of vertices */
struct bilist ****buckets, /* array of lists for bucket sort */
struct bilist **listspace, /* list data structure for each vertex */
int **dvals, /* d-values for each vertex for removing */
int *sets, /* processor each vertex is assigned to */
float *term_wgts[], /* weights for terminal prapogation */
int maxdval, /* maximum possible dvalue for a vertex */
int nsets, /* number of sets being divided into */
int parity, /* work in forward or backward direction? */
int (*hops)[MAXSETS], /* hop cost between sets */
int *bspace, /* indices for randomly ordering vtxs */
int list_length, /* number of values in bspace to work with */
int npass, /* which pass through KL is this? */
int using_ewgts /* are edge weights being used? */
)
{
extern int KL_RANDOM; /* use randomness in KL? */
extern int KL_UNDO_LIST; /* only sort vertices who have moved. */
extern double CUT_TO_HOP_COST; /* if term_prop, cut/hop importance */
struct bilist **bptr = NULL; /* loops through set of buckets */
struct bilist *lptr = NULL; /* pointer to an element in listspace */
float *ewptr = NULL; /* loops through edge weights */
int *bsptr = NULL; /* loops through bspace */
int *edges = NULL; /* edge list for a vertex */
int myset; /* set that current vertex belongs to */
int newset; /* set current vertex could move to */
int set; /* set that neighboring vertex belongs to */
int weight; /* edge weight for a particular edge */
int vtx; /* vertex in graph */
float tval; /* terminal propagation value */
int val; /* terminal propagation rounded value */
double cut_cost; /* relative cut/hop importance */
double hop_cost; /* relative hop/cut importance */
int myhop; /* hops associated with current vertex */
int i, j, l; /* loop counters */
/* For each vertex, compute d-values for each possible transition. */
/* Then store them in each appropriate bucket. */
if (npass == 1 || !KL_UNDO_LIST || list_length == nvtxs) {
/* Empty all the buckets. */
/* Last clause catches case where lists weren't undone. */
bptr = buckets[0][1];
for (i = nsets * (nsets - 1) * (2 * maxdval + 1); i; i--) {
*bptr++ = NULL;
}
}
/* Randomize the order of the vertices */
if (list_length == nvtxs || !KL_UNDO_LIST) {
bsptr = bspace;
list_length = nvtxs;
if (parity) {
for (i = 1; i <= nvtxs; i++) {
*bsptr++ = i;
}
}
else {
for (i = nvtxs; i; i--) {
*bsptr++ = i;
}
}
}
if (KL_RANDOM) {
randomize(bspace - 1, list_length);
}
/* Now compute d-vals by seeing which sets neighbors belong to. */
cut_cost = hop_cost = 1;
if (term_wgts[1] != NULL) {
if (CUT_TO_HOP_COST > 1) {
cut_cost = CUT_TO_HOP_COST;
}
else {
hop_cost = 1.0 / CUT_TO_HOP_COST;
}
}
weight = cut_cost + .5;
bsptr = bspace;
for (i = 0; i < list_length; i++) { /* Loop through vertices. */
vtx = *bsptr++;
myset = sets[vtx];
/* Initialize all the preference values. */
if (term_wgts[1] != NULL) {
/* Using terminal propagation. */
if (myset == 0) { /* No terminal value. */
for (newset = 1; newset < nsets; newset++) {
tval = (term_wgts[newset])[vtx];
if (tval < 0) {
val = -tval * hop_cost + .5;
val = -val;
}
else {
val = tval * hop_cost + .5;
}
dvals[vtx][newset - 1] = val;
}
}
else {
tval = -(term_wgts[myset])[vtx];
if (tval < 0) {
val = -tval * hop_cost + .5;
val = -val;
}
else {
val = tval * hop_cost + .5;
}
dvals[vtx][0] = val;
l = 1;
for (newset = 1; newset < nsets; newset++) {
if (newset != myset) {
tval = (term_wgts[newset])[vtx] - (term_wgts[myset])[vtx];
if (tval < 0) {
val = -tval * hop_cost + .5;
val = -val;
}
else {
val = tval * hop_cost + .5;
}
dvals[vtx][l] = val;
l++;
}
}
}
}
else {
for (j = 0; j < nsets - 1; j++) {
dvals[vtx][j] = 0;
}
}
/* First count the neighbors in each set. */
edges = graph[vtx]->edges;
if (using_ewgts) {
ewptr = graph[vtx]->ewgts;
}
for (j = graph[vtx]->nedges - 1; j; j--) {
set = sets[*(++edges)];
if (set < 0) {
set = -set - 1;
}
if (using_ewgts) {
weight = *(++ewptr) * cut_cost + .5;
}
myhop = hops[myset][set];
l = 0;
for (newset = 0; newset < nsets; newset++) {
if (newset != myset) {
dvals[vtx][l] += weight * (myhop - hops[newset][set]);
l++;
}
}
}
/* Now add to appropriate buckets. */
l = 0;
for (newset = 0; newset < nsets; newset++) {
if (newset != myset) {
lptr = listspace[l];
add2bilist(&lptr[vtx], &buckets[myset][newset][dvals[vtx][l] + maxdval]);
++l;
}
}
}
}