Cloned SEACAS for EXODUS library with extra build files for internal package management.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

303 lines
11 KiB

/*
* Copyright(C) 1999-2020 National Technology & Engineering Solutions
* of Sandia, LLC (NTESS). Under the terms of Contract DE-NA0003525 with
* NTESS, the U.S. Government retains certain rights in this software.
*
* See packages/seacas/LICENSE for details
*/
#include "smalloc.h" // for sfree, smalloc
#include "structs.h" // for vtx_data
#include <stdio.h> // for fprintf, printf, FILE, NULL
#include <stdlib.h>
/* Print metrics of partition quality. */
void countup_mesh(struct vtx_data **graph, /* graph data structure */
int nvtxs, /* number of vtxs in graph */
int * assignment, /* set number of each vtx (length nvtxs+1) */
int mesh_dims[3], /* extent of mesh in each dimension */
int print_lev, /* level of output */
FILE * outfile, /* output file if not NULL */
int using_ewgts /* are edge weights being used? */
)
{
double *hopsize; /* number of hops for each set */
double *cutsize; /* number of cuts for each set */
int * setsize; /* number or weight of vtxs in each set */
int * setseen; /* flags for sets adjacent to a particular set */
int * inorder; /* list of vtxs in each set */
int * startptr; /* indices into inorder array */
double ncuts; /* total number of edges connecting sets */
double nhops; /* total cuts weighted by mesh hops */
double ewgt; /* edge weight */
int nsets; /* number of sets after a level */
int vtx; /* vertex in graph */
int set, set2, set3; /* sets neighboring vtxs are assigned to */
int onbdy; /* counts number of neighboring set for a vtx */
int min_size, max_size; /* min and max set sizes */
int tot_size; /* total of all set sizes */
double bdyvtxs; /* sum of onbdy values for a set */
double bdyvtx_hops; /* weights boundary vertices by wires required */
double bdyvtx_hops_tot; /* weights boundary vertices by wires required */
double bdyvtx_hops_max; /* weights boundary vertices by wires required */
double bdyvtx_hops_min; /* weights boundary vertices by wires required */
int neighbor_sets; /* number of neighboring sets for a set */
int internal; /* number of internal vertices in a set */
int min_internal; /* smallest number of internal vertices */
int max_internal; /* largest number of internal vertices */
int total_internal; /* total number of internal nodes */
double maxcuts; /* largest cuts among all processors */
double mincuts; /* smallest cuts among all processors */
double maxhops; /* largest hops among all processors */
double minhops; /* smallest hops among all processors */
double maxbdy; /* largest bdy_vtxs among all processors */
double minbdy; /* smallest bdy_vtxs among all processors */
int maxneighbors; /* largest neighbor_sets among all processors */
int minneighbors; /* smallest neighbor_sets among all processors */
double total_bdyvtxs; /* sum of all onbdy values in whole graph */
int total_neighbors; /* number of neighboring sets in graph */
int neighbor; /* neighbor of a vertex */
int print2file; /* should I print to a file? */
int x1, y1, z1; /* mesh location of vertex */
int x2, y2, z2; /* mesh location of neighboring vertex */
int i, j; /* loop counters */
print2file = (outfile != NULL);
ewgt = 1;
nsets = mesh_dims[0] * mesh_dims[1] * mesh_dims[2];
cutsize = smalloc(nsets * sizeof(double));
hopsize = smalloc(nsets * sizeof(double));
setsize = smalloc(nsets * sizeof(int));
setseen = smalloc(nsets * sizeof(int));
startptr = smalloc((nsets + 1) * sizeof(int));
inorder = smalloc(nvtxs * sizeof(int));
for (j = 0; j < nsets; j++) {
setsize[j] = 0;
}
for (i = 1; i <= nvtxs; i++) {
++setsize[assignment[i]];
}
/* Modify setsize to become index into vertex list. */
for (j = 1; j < nsets; j++) {
setsize[j] += setsize[j - 1];
}
for (j = nsets - 1; j > 0; j--) {
startptr[j] = setsize[j] = setsize[j - 1];
}
startptr[0] = setsize[0] = 0;
startptr[nsets] = nvtxs;
for (i = 1; i <= nvtxs; i++) {
set = assignment[i];
inorder[setsize[set]] = i;
setsize[set]++;
}
for (j = 0; j < nsets; j++) {
cutsize[j] = 0;
hopsize[j] = 0;
setsize[j] = 0;
}
for (i = 1; i <= nvtxs; i++) {
set = assignment[i];
setsize[set] += graph[i]->vwgt;
x1 = set % mesh_dims[0];
y1 = (set / mesh_dims[0]) % mesh_dims[1];
z1 = set / (mesh_dims[0] * mesh_dims[1]);
for (j = 1; j < graph[i]->nedges; j++) {
neighbor = graph[i]->edges[j];
set2 = assignment[neighbor];
x2 = set2 % mesh_dims[0];
y2 = (set2 / mesh_dims[0]) % mesh_dims[1];
z2 = set2 / (mesh_dims[0] * mesh_dims[1]);
if (set != set2) {
if (using_ewgts) {
ewgt = graph[i]->ewgts[j];
}
cutsize[set] += ewgt;
hopsize[set] += ewgt * (abs(x1 - x2) + abs(y1 - y2) + abs(z1 - z2));
}
}
}
max_size = 0;
tot_size = 0;
for (set = 0; set < nsets; set++) {
tot_size += setsize[set];
if (setsize[set] > max_size) {
max_size = setsize[set];
}
}
min_size = max_size;
for (set = 0; set < nsets; set++) {
if (setsize[set] < min_size) {
min_size = setsize[set];
}
}
ncuts = nhops = 0;
total_bdyvtxs = total_neighbors = 0;
bdyvtx_hops_tot = bdyvtx_hops_max = bdyvtx_hops_min = 0;
maxcuts = mincuts = 0;
maxhops = minhops = 0;
maxbdy = minbdy = 0;
maxneighbors = minneighbors = 0;
total_internal = 0;
min_internal = max_size;
max_internal = 0;
printf("\nAfter full partitioning (nsets = %d)\n", nsets);
if (print2file) {
fprintf(outfile, "\nAfter full partitioning (nsets = %d)\n", nsets);
}
if (print_lev < 0) {
printf(" set size cuts hops bndy_vtxs adj_sets\n");
if (print2file) {
fprintf(outfile, " set size cuts hops bndy_vtxs adj_sets\n");
}
}
for (set = 0; set < nsets; set++) {
/* Compute number of set neighbors, and number of vtxs on boundary. */
internal = setsize[set];
for (i = 0; i < nsets; i++) {
setseen[i] = 0;
}
x1 = set % mesh_dims[0];
y1 = (set / mesh_dims[0]) % mesh_dims[1];
z1 = set / (mesh_dims[0] * mesh_dims[1]);
set2 = set;
bdyvtxs = 0;
bdyvtx_hops = 0;
for (i = startptr[set2]; i < startptr[set2 + 1]; i++) {
onbdy = 0;
vtx = inorder[i];
for (j = 1; j < graph[vtx]->nedges; j++) {
neighbor = graph[vtx]->edges[j];
set3 = assignment[neighbor];
if (set3 != set) { /* Is vtx on boundary? */
/* Has this neighboring set been seen already? */
if (setseen[set3] >= 0) {
x2 = set3 % mesh_dims[0];
y2 = (set3 / mesh_dims[0]) % mesh_dims[1];
z2 = set3 / (mesh_dims[0] * mesh_dims[1]);
bdyvtx_hops += abs(x1 - x2) + abs(y1 - y2) + abs(z1 - z2);
++onbdy;
setseen[set3] = -setseen[set3] - 1;
}
}
}
/* Now reset all the setseen values to be positive. */
if (onbdy != 0) {
for (j = 1; j < graph[vtx]->nedges; j++) {
neighbor = graph[vtx]->edges[j];
set3 = assignment[neighbor];
if (setseen[set3] < 0) {
setseen[set3] = -setseen[set3];
}
}
internal -= graph[vtx]->vwgt;
}
bdyvtxs += onbdy;
}
total_internal += internal;
bdyvtx_hops_tot += bdyvtx_hops;
if (bdyvtx_hops > bdyvtx_hops_max) {
bdyvtx_hops_max = bdyvtx_hops;
}
if (set == 0 || bdyvtx_hops < bdyvtx_hops_min) {
bdyvtx_hops_min = bdyvtx_hops;
}
if (internal > max_internal) {
max_internal = internal;
}
if (set == 0 || internal < min_internal) {
min_internal = internal;
}
/* Now count up the number of neighboring sets. */
neighbor_sets = 0;
for (i = 0; i < nsets; i++) {
if (setseen[i] != 0) {
++neighbor_sets;
}
}
if (print_lev < 0) {
printf(" %5d %5d %6g %6g %6g %6d\n", set, setsize[set], cutsize[set],
hopsize[set], bdyvtxs, neighbor_sets);
if (print2file) {
fprintf(outfile, " %5d %5d %6g %6g %6g %6d\n", set, setsize[set],
cutsize[set], hopsize[set], bdyvtxs, neighbor_sets);
}
}
if (cutsize[set] > maxcuts) {
maxcuts = cutsize[set];
}
if (set == 0 || cutsize[set] < mincuts) {
mincuts = cutsize[set];
}
if (hopsize[set] > maxhops) {
maxhops = hopsize[set];
}
if (set == 0 || hopsize[set] < minhops) {
minhops = hopsize[set];
}
if (bdyvtxs > maxbdy) {
maxbdy = bdyvtxs;
}
if (set == 0 || bdyvtxs < minbdy) {
minbdy = bdyvtxs;
}
if (neighbor_sets > maxneighbors) {
maxneighbors = neighbor_sets;
}
if (set == 0 || neighbor_sets < minneighbors) {
minneighbors = neighbor_sets;
}
ncuts += cutsize[set];
nhops += hopsize[set];
total_bdyvtxs += bdyvtxs;
total_neighbors += neighbor_sets;
}
ncuts /= 2;
nhops /= 2;
printf("\n");
printf(" Total Max/Set Min/Set\n");
printf(" ----- ------- -------\n");
printf("Set Size: %11d %11d %11d\n", tot_size, max_size, min_size);
printf("Edge Cuts: %11g %11g %11g\n", ncuts, maxcuts, mincuts);
printf("Mesh Hops: %11g %11g %11g\n", nhops, maxhops, minhops);
printf("Boundary Vertices: %11g %11g %11g\n", total_bdyvtxs, maxbdy, minbdy);
printf("Boundary Vertex Hops: %11g %11g %11g\n", bdyvtx_hops_tot, bdyvtx_hops_max,
bdyvtx_hops_min);
printf("Adjacent Sets: %11d %11d %11d\n", total_neighbors, maxneighbors, minneighbors);
printf("Internal Vertices: %11d %11d %11d\n\n", total_internal, max_internal, min_internal);
if (print2file) {
fprintf(outfile, "\n");
fprintf(outfile, " Total Max/Set Min/Set\n");
fprintf(outfile, " ----- ------- -------\n");
fprintf(outfile, "Set Size: %11d %11d %11d\n", tot_size, max_size, min_size);
fprintf(outfile, "Edge Cuts: %11g %11g %11g\n", ncuts, maxcuts, mincuts);
fprintf(outfile, "Hypercube Hops: %11g %11g %11g\n", nhops, maxhops, minhops);
fprintf(outfile, "Boundary Vertices: %11g %11g %11g\n", total_bdyvtxs, maxbdy, minbdy);
fprintf(outfile, "Boundary Vertex Hops: %11g %11g %11g\n", bdyvtx_hops_tot, bdyvtx_hops_max,
bdyvtx_hops_min);
fprintf(outfile, "Adjacent Sets: %11d %11d %11d\n", total_neighbors, maxneighbors,
minneighbors);
fprintf(outfile, "Internal Vertices: %11d %11d %11d\n\n", total_internal, max_internal,
min_internal);
}
sfree(cutsize);
sfree(hopsize);
sfree(setsize);
sfree(setseen);
sfree(startptr);
sfree(inorder);
}