You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
120 lines
3.4 KiB
120 lines
3.4 KiB
/*
|
|
* Copyright(C) 1999-2020, 2023 National Technology & Engineering Solutions
|
|
* of Sandia, LLC (NTESS). Under the terms of Contract DE-NA0003525 with
|
|
* NTESS, the U.S. Government retains certain rights in this software.
|
|
*
|
|
* See packages/seacas/LICENSE for details
|
|
*/
|
|
|
|
#include "defs.h"
|
|
#include "structs.h"
|
|
#include <math.h>
|
|
#include <stdio.h>
|
|
|
|
double opt2d(
|
|
/* Compute rotation angle to minimize distance to discrete points. */
|
|
struct vtx_data **graph, /* data structure with vertex weights */
|
|
double **yvecs, /* eigenvectors */
|
|
int nvtxs, /* total number of vertices */
|
|
int nmyvtxs /* number of vertices I own */
|
|
)
|
|
{
|
|
extern int DEBUG_OPTIMIZE; /* debug flag for optimization */
|
|
double *aptr, *bptr; /* loop through yvecs */
|
|
double coeffs[5]; /* various products of yvecs */
|
|
double a, b; /* temporary values */
|
|
double func = 0.0; /* value of function to be minimized */
|
|
double grad, hess; /* first and 2nd derivatives of function */
|
|
double grad_min; /* acceptably small gradient */
|
|
double theta; /* angle being optimized */
|
|
double step; /* change in angle */
|
|
double step_max; /* maximum allowed step */
|
|
double step_min; /* minimum step => convergence */
|
|
double hess_min; /* value for hessian is < 0 */
|
|
double hfact; /* scaling for min tolerated hessian */
|
|
double w; /* vertex weight squared */
|
|
double pdtol; /* allowed error in hessian pd-ness */
|
|
int pdflag; /* is hessian positive semi-definite? */
|
|
int i; /* loop counter */
|
|
|
|
/* Set parameters. */
|
|
step_max = PI / 8;
|
|
step_min = 2.0e-5;
|
|
grad_min = 1.0e-7;
|
|
pdtol = 1.0e-8;
|
|
hfact = 2;
|
|
|
|
for (i = 0; i < 5; i++) {
|
|
coeffs[i] = 0;
|
|
}
|
|
aptr = yvecs[1] + 1;
|
|
bptr = yvecs[2] + 1;
|
|
for (i = 1; i <= nmyvtxs; i++) {
|
|
a = *aptr++;
|
|
b = *bptr++;
|
|
w = graph[i]->vwgt;
|
|
if (w == 1) {
|
|
coeffs[0] += a * a * a * a;
|
|
coeffs[1] += a * a * a * b;
|
|
coeffs[2] += a * a * b * b;
|
|
coeffs[3] += a * b * b * b;
|
|
coeffs[4] += b * b * b * b;
|
|
}
|
|
else {
|
|
w = 1 / (w * w);
|
|
coeffs[0] += a * a * a * a * w;
|
|
coeffs[1] += a * a * a * b * w;
|
|
coeffs[2] += a * a * b * b * w;
|
|
coeffs[3] += a * b * b * b * w;
|
|
coeffs[4] += b * b * b * b * w;
|
|
}
|
|
}
|
|
/* Adjust for normalization of eigenvectors. */
|
|
/* This should make tolerances independent of vector length */
|
|
for (i = 0; i < 5; i++) {
|
|
coeffs[i] *= nvtxs;
|
|
}
|
|
|
|
i = 0;
|
|
theta = 0.0;
|
|
step = step_max;
|
|
pdflag = FALSE;
|
|
grad = 0;
|
|
while (fabs(step) >= step_min && (!pdflag || fabs(grad) > grad_min)) {
|
|
func = func2d(coeffs, theta);
|
|
grad = grad2d(coeffs, theta);
|
|
hess = hess2d(coeffs);
|
|
|
|
if (hess < -pdtol) {
|
|
pdflag = FALSE;
|
|
}
|
|
else {
|
|
pdflag = TRUE;
|
|
}
|
|
|
|
hess_min = hfact * fabs(grad) / step_max;
|
|
if (hess < hess_min) {
|
|
hess = hess_min;
|
|
}
|
|
|
|
if (fabs(grad) > fabs(hess * step_max)) {
|
|
step = -step_max * sign(grad);
|
|
}
|
|
else {
|
|
step = -grad / hess;
|
|
}
|
|
|
|
theta += step;
|
|
if (fabs(step) < step_min && !pdflag) { /* Convergence to non-min. */
|
|
step = step_min;
|
|
theta += step;
|
|
}
|
|
i++;
|
|
}
|
|
|
|
if (DEBUG_OPTIMIZE > 0) {
|
|
printf("After %d passes, func=%e, theta = %f\n", i, func, theta);
|
|
}
|
|
|
|
return (theta);
|
|
}
|
|
|