Cloned SEACAS for EXODUS library with extra build files for internal package management.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

284 lines
9.8 KiB

/*
* Copyright(C) 1999-2020, 2023 National Technology & Engineering Solutions
* of Sandia, LLC (NTESS). Under the terms of Contract DE-NA0003525 with
* NTESS, the U.S. Government retains certain rights in this software.
*
* See packages/seacas/LICENSE for details
*/
#include "defs.h"
#include "structs.h"
#include <math.h>
#include <stdio.h>
void opt3d(struct vtx_data **graph, /* data structure containing vertex weights */
double **yvecs, /* eigenvectors */
int nvtxs, /* total number of vertices */
int nmyvtxs, /* number of vertices I own */
double *vwsqrt, /* square root of vertex weights */
double *ptheta, double *pphi, double *pgamma, /* return optimal angles */
int using_vwgts /* are vertex weights being used? */
)
/* Compute rotation angle to minimize distance to discrete points. */
{
extern int DEBUG_OPTIMIZE; /* debug flag for optimization */
extern int OPT3D_NTRIES; /* number of local opts to find global min */
double *aptr, *bptr, *cptr; /* loop through yvecs */
double *wsptr; /* loops through vwsqrt */
double coeffs[25]; /* various products of yvecs */
double vars[3]; /* angular variables */
double best[3]; /* best minimizer found so far */
double grad[3]; /* gradiant of the function */
double gradc[3]; /* gradiant of the constraint */
double hess[3][3]; /* hessian of the function */
double hessc[3][3]; /* hessian of the constraint */
double step[3]; /* Newton step in optimization */
double grad_norm; /* norm of the gradient */
double grad_min; /* acceptable gradient for convergence */
double a, b, c; /* temporary values */
double funcf = 0.0, funcc; /* values of function to be minimized */
double step_size; /* norm of step */
double step_max; /* maximum allowed step */
double step_min; /* minimum step => convergence */
double early_step_min; /* min step for early convergence stages */
double final_step_min; /* min step for final convergence */
double hess_min; /* value for hessian if < 0 */
double hess_tol; /* smallest possible positive hess_min */
double hfact; /* scales minimum tolerated hessian */
double w, ws = 0; /* vertex weight squared or to the 1.5 */
double mult; /* multiplier for constraint violation */
double max_constraint; /* maximum allowed value for constraint */
double eval; /* smallest eigenvalue of Hessian */
double pdtol; /* eval < tol considered to be 0 */
double mfactor; /* scaling for constraint growth */
double mstart; /* starting value for constraint scaling */
double bestf; /* value of best minimizer so far */
double res; /* returned eigen-residual */
int pdflag; /* converging to non-minimum? */
int inner; /* number of iterations at each stage */
int inner1;
int total; /* total number of iterations */
int ntries, maxtries; /* number of local minimizations */
int i, j; /* loop counter */
/* Set parameters. */
best[0] = best[1] = best[2] = 0.0;
a = sqrt((double)nvtxs);
step_max = PI / 4;
early_step_min = 2.0e-4;
final_step_min = early_step_min / 10;
grad_min = 1.0e-7;
hfact = 2;
hess_tol = 1.0e-6;
pdtol = 1.0e-7;
max_constraint = 1.0e-12 * a;
mfactor = 20.0;
mstart = 5.0 * a;
for (i = 0; i < 25; i++) {
coeffs[i] = 0;
}
aptr = yvecs[1] + 1;
bptr = yvecs[2] + 1;
cptr = yvecs[3] + 1;
wsptr = vwsqrt + 1;
for (i = 1; i <= nmyvtxs; i++) {
a = *aptr++;
b = *bptr++;
c = *cptr++;
w = graph[i]->vwgt;
if (using_vwgts) {
ws = *wsptr++;
}
if (w == 1) {
coeffs[0] += a * a * a * a;
coeffs[1] += b * b * b * b;
coeffs[2] += c * c * c * c;
coeffs[3] += a * a * a * b;
coeffs[4] += a * a * b * b;
coeffs[5] += a * b * b * b;
coeffs[6] += a * a * a * c;
coeffs[7] += a * a * c * c;
coeffs[8] += a * c * c * c;
coeffs[9] += b * b * b * c;
coeffs[10] += b * b * c * c;
coeffs[11] += b * c * c * c;
coeffs[12] += a * a * b * c;
coeffs[13] += a * b * b * c;
coeffs[14] += a * b * c * c;
coeffs[15] += a * a * a;
coeffs[16] += b * b * b;
coeffs[17] += c * c * c;
coeffs[18] += a * a * b;
coeffs[19] += a * a * c;
coeffs[20] += a * b * b;
coeffs[21] += b * b * c;
coeffs[22] += a * c * c;
coeffs[23] += b * c * c;
coeffs[24] += a * b * c;
}
else {
w = 1 / (w * w);
ws = 1 / ws;
coeffs[0] += a * a * a * a * w;
coeffs[1] += b * b * b * b * w;
coeffs[2] += c * c * c * c * w;
coeffs[3] += a * a * a * b * w;
coeffs[4] += a * a * b * b * w;
coeffs[5] += a * b * b * b * w;
coeffs[6] += a * a * a * c * w;
coeffs[7] += a * a * c * c * w;
coeffs[8] += a * c * c * c * w;
coeffs[9] += b * b * b * c * w;
coeffs[10] += b * b * c * c * w;
coeffs[11] += b * c * c * c * w;
coeffs[12] += a * a * b * c * w;
coeffs[13] += a * b * b * c * w;
coeffs[14] += a * b * c * c * w;
coeffs[15] += a * a * a * ws;
coeffs[16] += b * b * b * ws;
coeffs[17] += c * c * c * ws;
coeffs[18] += a * a * b * ws;
coeffs[19] += a * a * c * ws;
coeffs[20] += a * b * b * ws;
coeffs[21] += b * b * c * ws;
coeffs[22] += a * c * c * ws;
coeffs[23] += b * c * c * ws;
coeffs[24] += a * b * c * ws;
}
}
/* Adjust for normalization of eigenvectors. */
/* This should make convergence criteria insensitive to problem size. */
/* Note that the relative sizes of funcf and funcc depend on normalization of
eigenvectors, and I'm assuming them normalized to 1. */
for (i = 0; i < 15; i++) {
coeffs[i] *= nvtxs;
}
a = sqrt((double)nvtxs);
for (i = 15; i < 25; i++) {
coeffs[i] *= a;
}
bestf = 0;
maxtries = OPT3D_NTRIES;
for (ntries = 1; ntries <= maxtries; ntries++) {
/* Initialize the starting guess randomly. */
vars[0] = TWOPI * (drandom() - .5);
vars[1] = acos(2.0 * drandom() - 1.0) - HALFPI;
vars[2] = TWOPI * (drandom() - .5);
inner1 = 0;
total = 0;
mult = mstart;
step_min = early_step_min;
funcc = max_constraint;
while (funcc >= max_constraint && total < 70) {
inner = 0;
step_size = step_min;
pdflag = FALSE;
grad_norm = 0;
while (step_size >= step_min && (!pdflag || grad_norm > grad_min) && inner < 15) {
funcf = func3d(coeffs, vars[0], vars[1], vars[2]);
grad3d(coeffs, grad, vars[0], vars[1], vars[2]);
hess3d(coeffs, hess);
/* Compute contribution of constraint term. */
funcc = constraint(&coeffs[15]);
/* func = funcf + mult*funcc; */
gradcon(&coeffs[15], gradc);
hesscon(&coeffs[15], hessc);
/* If in final pass, tighten convergence criterion. */
if (funcc < max_constraint) {
step_min = final_step_min;
}
for (i = 0; i < 3; i++) {
/* Note: I'm taking negative of gradient here. */
grad[i] = -grad[i] - mult * gradc[i];
for (j = 0; j < 3; j++) {
hess[i][j] += mult * hessc[i][j];
}
}
grad_norm = fabs(grad[0]) + fabs(grad[1]) + fabs(grad[2]);
hess_min = hfact * grad_norm / step_max;
if (hess_min < hess_tol) {
hess_min = hess_tol;
}
/* Find smallest eigenvalue of hess. */
ch_evals3(hess, &eval, &res, &res);
/* If eval < 0, add to diagonal to make pos def. */
if (eval < -pdtol) {
pdflag = FALSE;
}
else {
pdflag = TRUE;
}
if (eval < hess_min) {
for (i = 0; i < 3; i++) {
hess[i][i] += hess_min - eval;
}
}
/* Now solve linear system for step sizes. */
kramer3(hess, grad, step);
/* Scale step down if too big. */
step_size = fabs(step[0]) + fabs(step[1]) + fabs(step[2]);
if (step_size > step_max) {
a = step_max / step_size;
for (i = 0; i < 3; i++) {
step[i] *= a;
}
}
if ((step_size < step_min || grad_norm < grad_min) && !pdflag) {
/* Convergence to non-min. */
for (i = 0; i < 3; i++) {
hess[i][i] -= hess_min - eval;
}
ch_eigenvec3(hess, eval, step, &res);
step_size = fabs(step[0]) + fabs(step[1]) + fabs(step[2]);
a = step_min / step_size;
for (i = 0; i < 3; i++) {
step[i] *= a;
}
step_size = step_min;
}
for (i = 0; i < 3; i++) {
vars[i] += step[i];
}
inner++;
}
if (inner1 == 0) {
inner1 = inner;
}
total += inner;
mult *= mfactor;
}
if (DEBUG_OPTIMIZE > 0) {
printf("On try %d, After %d (%d) passes, funcf=%e, funcc=%e (%f, %f, %f)\n", ntries, total,
inner1, funcf, funcc, vars[0], vars[1], vars[2]);
}
if (ntries == 1 || funcf < bestf) {
bestf = funcf;
for (i = 0; i < 3; i++) {
best[i] = vars[i];
}
}
}
*ptheta = best[0];
*pphi = best[1];
*pgamma = best[2];
}