You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
284 lines
9.8 KiB
284 lines
9.8 KiB
/*
|
|
* Copyright(C) 1999-2020, 2023 National Technology & Engineering Solutions
|
|
* of Sandia, LLC (NTESS). Under the terms of Contract DE-NA0003525 with
|
|
* NTESS, the U.S. Government retains certain rights in this software.
|
|
*
|
|
* See packages/seacas/LICENSE for details
|
|
*/
|
|
|
|
#include "defs.h"
|
|
#include "structs.h"
|
|
#include <math.h>
|
|
#include <stdio.h>
|
|
|
|
void opt3d(struct vtx_data **graph, /* data structure containing vertex weights */
|
|
double **yvecs, /* eigenvectors */
|
|
int nvtxs, /* total number of vertices */
|
|
int nmyvtxs, /* number of vertices I own */
|
|
double *vwsqrt, /* square root of vertex weights */
|
|
double *ptheta, double *pphi, double *pgamma, /* return optimal angles */
|
|
int using_vwgts /* are vertex weights being used? */
|
|
)
|
|
|
|
/* Compute rotation angle to minimize distance to discrete points. */
|
|
{
|
|
extern int DEBUG_OPTIMIZE; /* debug flag for optimization */
|
|
extern int OPT3D_NTRIES; /* number of local opts to find global min */
|
|
double *aptr, *bptr, *cptr; /* loop through yvecs */
|
|
double *wsptr; /* loops through vwsqrt */
|
|
double coeffs[25]; /* various products of yvecs */
|
|
double vars[3]; /* angular variables */
|
|
double best[3]; /* best minimizer found so far */
|
|
double grad[3]; /* gradiant of the function */
|
|
double gradc[3]; /* gradiant of the constraint */
|
|
double hess[3][3]; /* hessian of the function */
|
|
double hessc[3][3]; /* hessian of the constraint */
|
|
double step[3]; /* Newton step in optimization */
|
|
double grad_norm; /* norm of the gradient */
|
|
double grad_min; /* acceptable gradient for convergence */
|
|
double a, b, c; /* temporary values */
|
|
double funcf = 0.0, funcc; /* values of function to be minimized */
|
|
double step_size; /* norm of step */
|
|
double step_max; /* maximum allowed step */
|
|
double step_min; /* minimum step => convergence */
|
|
double early_step_min; /* min step for early convergence stages */
|
|
double final_step_min; /* min step for final convergence */
|
|
double hess_min; /* value for hessian if < 0 */
|
|
double hess_tol; /* smallest possible positive hess_min */
|
|
double hfact; /* scales minimum tolerated hessian */
|
|
double w, ws = 0; /* vertex weight squared or to the 1.5 */
|
|
double mult; /* multiplier for constraint violation */
|
|
double max_constraint; /* maximum allowed value for constraint */
|
|
double eval; /* smallest eigenvalue of Hessian */
|
|
double pdtol; /* eval < tol considered to be 0 */
|
|
double mfactor; /* scaling for constraint growth */
|
|
double mstart; /* starting value for constraint scaling */
|
|
double bestf; /* value of best minimizer so far */
|
|
double res; /* returned eigen-residual */
|
|
int pdflag; /* converging to non-minimum? */
|
|
int inner; /* number of iterations at each stage */
|
|
int inner1;
|
|
int total; /* total number of iterations */
|
|
int ntries, maxtries; /* number of local minimizations */
|
|
int i, j; /* loop counter */
|
|
|
|
/* Set parameters. */
|
|
best[0] = best[1] = best[2] = 0.0;
|
|
a = sqrt((double)nvtxs);
|
|
step_max = PI / 4;
|
|
early_step_min = 2.0e-4;
|
|
final_step_min = early_step_min / 10;
|
|
grad_min = 1.0e-7;
|
|
hfact = 2;
|
|
hess_tol = 1.0e-6;
|
|
pdtol = 1.0e-7;
|
|
max_constraint = 1.0e-12 * a;
|
|
mfactor = 20.0;
|
|
mstart = 5.0 * a;
|
|
|
|
for (i = 0; i < 25; i++) {
|
|
coeffs[i] = 0;
|
|
}
|
|
|
|
aptr = yvecs[1] + 1;
|
|
bptr = yvecs[2] + 1;
|
|
cptr = yvecs[3] + 1;
|
|
wsptr = vwsqrt + 1;
|
|
for (i = 1; i <= nmyvtxs; i++) {
|
|
a = *aptr++;
|
|
b = *bptr++;
|
|
c = *cptr++;
|
|
w = graph[i]->vwgt;
|
|
if (using_vwgts) {
|
|
ws = *wsptr++;
|
|
}
|
|
if (w == 1) {
|
|
coeffs[0] += a * a * a * a;
|
|
coeffs[1] += b * b * b * b;
|
|
coeffs[2] += c * c * c * c;
|
|
coeffs[3] += a * a * a * b;
|
|
coeffs[4] += a * a * b * b;
|
|
coeffs[5] += a * b * b * b;
|
|
coeffs[6] += a * a * a * c;
|
|
coeffs[7] += a * a * c * c;
|
|
coeffs[8] += a * c * c * c;
|
|
coeffs[9] += b * b * b * c;
|
|
coeffs[10] += b * b * c * c;
|
|
coeffs[11] += b * c * c * c;
|
|
coeffs[12] += a * a * b * c;
|
|
coeffs[13] += a * b * b * c;
|
|
coeffs[14] += a * b * c * c;
|
|
|
|
coeffs[15] += a * a * a;
|
|
coeffs[16] += b * b * b;
|
|
coeffs[17] += c * c * c;
|
|
coeffs[18] += a * a * b;
|
|
coeffs[19] += a * a * c;
|
|
coeffs[20] += a * b * b;
|
|
coeffs[21] += b * b * c;
|
|
coeffs[22] += a * c * c;
|
|
coeffs[23] += b * c * c;
|
|
coeffs[24] += a * b * c;
|
|
}
|
|
else {
|
|
w = 1 / (w * w);
|
|
ws = 1 / ws;
|
|
coeffs[0] += a * a * a * a * w;
|
|
coeffs[1] += b * b * b * b * w;
|
|
coeffs[2] += c * c * c * c * w;
|
|
coeffs[3] += a * a * a * b * w;
|
|
coeffs[4] += a * a * b * b * w;
|
|
coeffs[5] += a * b * b * b * w;
|
|
coeffs[6] += a * a * a * c * w;
|
|
coeffs[7] += a * a * c * c * w;
|
|
coeffs[8] += a * c * c * c * w;
|
|
coeffs[9] += b * b * b * c * w;
|
|
coeffs[10] += b * b * c * c * w;
|
|
coeffs[11] += b * c * c * c * w;
|
|
coeffs[12] += a * a * b * c * w;
|
|
coeffs[13] += a * b * b * c * w;
|
|
coeffs[14] += a * b * c * c * w;
|
|
|
|
coeffs[15] += a * a * a * ws;
|
|
coeffs[16] += b * b * b * ws;
|
|
coeffs[17] += c * c * c * ws;
|
|
coeffs[18] += a * a * b * ws;
|
|
coeffs[19] += a * a * c * ws;
|
|
coeffs[20] += a * b * b * ws;
|
|
coeffs[21] += b * b * c * ws;
|
|
coeffs[22] += a * c * c * ws;
|
|
coeffs[23] += b * c * c * ws;
|
|
coeffs[24] += a * b * c * ws;
|
|
}
|
|
}
|
|
|
|
/* Adjust for normalization of eigenvectors. */
|
|
/* This should make convergence criteria insensitive to problem size. */
|
|
/* Note that the relative sizes of funcf and funcc depend on normalization of
|
|
eigenvectors, and I'm assuming them normalized to 1. */
|
|
for (i = 0; i < 15; i++) {
|
|
coeffs[i] *= nvtxs;
|
|
}
|
|
a = sqrt((double)nvtxs);
|
|
for (i = 15; i < 25; i++) {
|
|
coeffs[i] *= a;
|
|
}
|
|
|
|
bestf = 0;
|
|
maxtries = OPT3D_NTRIES;
|
|
for (ntries = 1; ntries <= maxtries; ntries++) {
|
|
/* Initialize the starting guess randomly. */
|
|
vars[0] = TWOPI * (drandom() - .5);
|
|
vars[1] = acos(2.0 * drandom() - 1.0) - HALFPI;
|
|
vars[2] = TWOPI * (drandom() - .5);
|
|
|
|
inner1 = 0;
|
|
total = 0;
|
|
mult = mstart;
|
|
step_min = early_step_min;
|
|
funcc = max_constraint;
|
|
while (funcc >= max_constraint && total < 70) {
|
|
inner = 0;
|
|
step_size = step_min;
|
|
pdflag = FALSE;
|
|
grad_norm = 0;
|
|
while (step_size >= step_min && (!pdflag || grad_norm > grad_min) && inner < 15) {
|
|
funcf = func3d(coeffs, vars[0], vars[1], vars[2]);
|
|
grad3d(coeffs, grad, vars[0], vars[1], vars[2]);
|
|
hess3d(coeffs, hess);
|
|
|
|
/* Compute contribution of constraint term. */
|
|
funcc = constraint(&coeffs[15]);
|
|
/* func = funcf + mult*funcc; */
|
|
gradcon(&coeffs[15], gradc);
|
|
hesscon(&coeffs[15], hessc);
|
|
|
|
/* If in final pass, tighten convergence criterion. */
|
|
if (funcc < max_constraint) {
|
|
step_min = final_step_min;
|
|
}
|
|
|
|
for (i = 0; i < 3; i++) {
|
|
/* Note: I'm taking negative of gradient here. */
|
|
grad[i] = -grad[i] - mult * gradc[i];
|
|
for (j = 0; j < 3; j++) {
|
|
hess[i][j] += mult * hessc[i][j];
|
|
}
|
|
}
|
|
|
|
grad_norm = fabs(grad[0]) + fabs(grad[1]) + fabs(grad[2]);
|
|
hess_min = hfact * grad_norm / step_max;
|
|
if (hess_min < hess_tol) {
|
|
hess_min = hess_tol;
|
|
}
|
|
|
|
/* Find smallest eigenvalue of hess. */
|
|
ch_evals3(hess, &eval, &res, &res);
|
|
|
|
/* If eval < 0, add to diagonal to make pos def. */
|
|
if (eval < -pdtol) {
|
|
pdflag = FALSE;
|
|
}
|
|
else {
|
|
pdflag = TRUE;
|
|
}
|
|
|
|
if (eval < hess_min) {
|
|
for (i = 0; i < 3; i++) {
|
|
hess[i][i] += hess_min - eval;
|
|
}
|
|
}
|
|
|
|
/* Now solve linear system for step sizes. */
|
|
kramer3(hess, grad, step);
|
|
|
|
/* Scale step down if too big. */
|
|
step_size = fabs(step[0]) + fabs(step[1]) + fabs(step[2]);
|
|
if (step_size > step_max) {
|
|
a = step_max / step_size;
|
|
for (i = 0; i < 3; i++) {
|
|
step[i] *= a;
|
|
}
|
|
}
|
|
|
|
if ((step_size < step_min || grad_norm < grad_min) && !pdflag) {
|
|
/* Convergence to non-min. */
|
|
for (i = 0; i < 3; i++) {
|
|
hess[i][i] -= hess_min - eval;
|
|
}
|
|
ch_eigenvec3(hess, eval, step, &res);
|
|
step_size = fabs(step[0]) + fabs(step[1]) + fabs(step[2]);
|
|
a = step_min / step_size;
|
|
for (i = 0; i < 3; i++) {
|
|
step[i] *= a;
|
|
}
|
|
step_size = step_min;
|
|
}
|
|
for (i = 0; i < 3; i++) {
|
|
vars[i] += step[i];
|
|
}
|
|
inner++;
|
|
}
|
|
if (inner1 == 0) {
|
|
inner1 = inner;
|
|
}
|
|
total += inner;
|
|
mult *= mfactor;
|
|
}
|
|
|
|
if (DEBUG_OPTIMIZE > 0) {
|
|
printf("On try %d, After %d (%d) passes, funcf=%e, funcc=%e (%f, %f, %f)\n", ntries, total,
|
|
inner1, funcf, funcc, vars[0], vars[1], vars[2]);
|
|
}
|
|
|
|
if (ntries == 1 || funcf < bestf) {
|
|
bestf = funcf;
|
|
for (i = 0; i < 3; i++) {
|
|
best[i] = vars[i];
|
|
}
|
|
}
|
|
}
|
|
*ptheta = best[0];
|
|
*pphi = best[1];
|
|
*pgamma = best[2];
|
|
}
|
|
|