Cloned SEACAS for EXODUS library with extra build files for internal package management.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

241 lines
7.6 KiB

C Copyright(C) 1999-2020 National Technology & Engineering Solutions
C of Sandia, LLC (NTESS). Under the terms of Contract DE-NA0003525 with
C NTESS, the U.S. Government retains certain rights in this software.
C
C See packages/seacas/LICENSE for details
subroutine tinvit(nm,n,d,e,e2,m,w,ind,z,
x ierr,rv1,rv2,rv3,rv4,rv6)
integer i,j,m,n,p,q,r,s,ii,ip,jj,nm,its,tag,ierr,group
double precision d(n),e(n),e2(n),w(m),z(nm,m),
x rv1(n),rv2(n),rv3(n),rv4(n),rv6(n)
double precision u,v,uk,xu,x0,x1,eps2,eps3,eps4,norm,order,epslon,
x pythag
integer ind(m)
c this subroutine is a translation of the inverse iteration tech-
c nique in the algol procedure tristurm by peters and wilkinson.
c handbook for auto. comp., vol.ii-linear algebra, 418-439(1971).
c this subroutine finds those eigenvectors of a tridiagonal
c symmetric matrix corresponding to specified eigenvalues,
c using inverse iteration.
c on input
c nm must be set to the row dimension of two-dimensional
c array parameters as declared in the calling program
c dimension statement.
c n is the order of the matrix.
c d contains the diagonal elements of the input matrix.
c e contains the subdiagonal elements of the input matrix
c in its last n-1 positions. e(1) is arbitrary.
c e2 contains the squares of the corresponding elements of e,
c with zeros corresponding to negligible elements of e.
c e(i) is considered negligible if it is not larger than
c the product of the relative machine precision and the sum
c of the magnitudes of d(i) and d(i-1). e2(1) must contain
c 0.0d0 if the eigenvalues are in ascending order, or 2.0d0
c if the eigenvalues are in descending order. if bisect,
c tridib, or imtqlv has been used to find the eigenvalues,
c their output e2 array is exactly what is expected here.
c m is the number of specified eigenvalues.
c w contains the m eigenvalues in ascending or descending order.
c ind contains in its first m positions the submatrix indices
c associated with the corresponding eigenvalues in w --
c 1 for eigenvalues belonging to the first submatrix from
c the top, 2 for those belonging to the second submatrix, etc.
c on output
c all input arrays are unaltered.
c z contains the associated set of orthonormal eigenvectors.
c any vector which fails to converge is set to zero.
c ierr is set to
c zero for normal return,
c -r if the eigenvector corresponding to the r-th
c eigenvalue fails to converge in 5 iterations.
c rv1, rv2, rv3, rv4, and rv6 are temporary storage arrays.
c calls pythag for dsqrt(a*a + b*b) .
c questions and comments should be directed to burton s. garbow,
c mathematics and computer science div, argonne national laboratory
c this version dated august 1983.
c ------------------------------------------------------------------
ierr = 0
if (m .eq. 0) go to 1001
tag = 0
order = 1.0d0 - e2(1)
q = 0
c .......... establish and process next submatrix ..........
100 p = q + 1
do 120 q = p, n
if (q .eq. n) go to 140
if (e2(q+1) .eq. 0.0d0) go to 140
120 continue
c .......... find vectors by inverse iteration ..........
140 tag = tag + 1
s = 0
do 920 r = 1, m
if (ind(r) .ne. tag) go to 920
its = 1
x1 = w(r)
if (s .ne. 0) go to 510
c .......... check for isolated root ..........
xu = 1.0d0
if (p .ne. q) go to 490
rv6(p) = 1.0d0
go to 870
490 norm = dabs(d(p))
ip = p + 1
do 500 i = ip, q
500 norm = dmax1(norm, dabs(d(i))+dabs(e(i)))
c .......... eps2 is the criterion for grouping,
c eps3 replaces zero pivots and equal
c roots are modified by eps3,
c eps4 is taken very small to avoid overflow ..........
eps2 = 1.0d-3 * norm
eps3 = epslon(norm)
uk = q - p + 1
eps4 = uk * eps3
uk = eps4 / dsqrt(uk)
s = p
505 group = 0
go to 520
c .......... look for close or coincident roots ..........
510 if (dabs(x1-x0) .ge. eps2) go to 505
group = group + 1
if (order * (x1 - x0) .le. 0.0d0) x1 = x0 + order * eps3
c .......... elimination with interchanges and
c initialization of vector ..........
520 v = 0.0d0
do 580 i = p, q
rv6(i) = uk
if (i .eq. p) go to 560
if (dabs(e(i)) .lt. dabs(u)) go to 540
c .......... warning -- a divide check may occur here if
c e2 array has not been specified correctly ..........
xu = u / e(i)
rv4(i) = xu
rv1(i-1) = e(i)
rv2(i-1) = d(i) - x1
rv3(i-1) = 0.0d0
if (i .ne. q) rv3(i-1) = e(i+1)
u = v - xu * rv2(i-1)
v = -xu * rv3(i-1)
go to 580
540 xu = e(i) / u
rv4(i) = xu
rv1(i-1) = u
rv2(i-1) = v
rv3(i-1) = 0.0d0
560 u = d(i) - x1 - xu * v
if (i .ne. q) v = e(i+1)
580 continue
if (u .eq. 0.0d0) u = eps3
rv1(q) = u
rv2(q) = 0.0d0
rv3(q) = 0.0d0
c .......... back substitution
c for i=q step -1 until p do -- ..........
600 do 620 ii = p, q
i = p + q - ii
rv6(i) = (rv6(i) - u * rv2(i) - v * rv3(i)) / rv1(i)
v = u
u = rv6(i)
620 continue
c .......... orthogonalize with respect to previous
c members of group ..........
if (group .eq. 0) go to 700
j = r
do 680 jj = 1, group
630 j = j - 1
if (ind(j) .ne. tag) go to 630
xu = 0.0d0
do 640 i = p, q
640 xu = xu + rv6(i) * z(i,j)
do 660 i = p, q
660 rv6(i) = rv6(i) - xu * z(i,j)
680 continue
700 norm = 0.0d0
do 720 i = p, q
720 norm = norm + dabs(rv6(i))
if (norm .ge. 1.0d0) go to 840
c .......... forward substitution ..........
if (its .eq. 5) go to 830
if (norm .ne. 0.0d0) go to 740
rv6(s) = eps4
s = s + 1
if (s .gt. q) s = p
go to 780
740 xu = eps4 / norm
do 760 i = p, q
760 rv6(i) = rv6(i) * xu
c .......... elimination operations on next vector
c iterate ..........
780 do 820 i = ip, q
u = rv6(i)
c .......... if rv1(i-1) .eq. e(i), a row interchange
c was performed earlier in the
c triangularization process ..........
if (rv1(i-1) .ne. e(i)) go to 800
u = rv6(i-1)
rv6(i-1) = rv6(i)
800 rv6(i) = u - rv4(i) * rv6(i-1)
820 continue
its = its + 1
go to 600
c .......... set error -- non-converged eigenvector ..........
830 ierr = -r
xu = 0.0d0
go to 870
c .......... normalize so that sum of squares is
c 1 and expand to full order ..........
840 u = 0.0d0
do 860 i = p, q
860 u = pythag(u,rv6(i))
xu = 1.0d0 / u
870 do 880 i = 1, n
880 z(i,r) = 0.0d0
do 900 i = p, q
900 z(i,r) = rv6(i) * xu
x0 = x1
920 continue
if (q .lt. n) go to 100
1001 return
end