Cloned SEACAS for EXODUS library with extra build files for internal package management.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

167 lines
5.2 KiB

C Copyright(C) 1999-2020 National Technology & Engineering Solutions
C of Sandia, LLC (NTESS). Under the terms of Contract DE-NA0003525 with
C NTESS, the U.S. Government retains certain rights in this software.
C
C See packages/seacas/LICENSE for details
C=======================================================================
subroutine movnod(numnp, ndim, x, y, z,
* vnorm, neesss, nnesss, ltness,
* plane, neessm, nnessm, ltnesm,
* toler, delmax, index, vector, gap)
C=======================================================================
REAL X(*), Y(*), Z(*), VNORM(3,*), PLANE(4,*)
DIMENSION LTNESS(4,*), LTNESM(4,*)
INTEGER INDEX(*)
REAL VECTOR(3)
LOGICAL FOUND
REAL PI(3)
dmax = 0.0
dmin = 1.0e15
delmx2 = delmax**2
match = 0
do 130 inod = 1, numnp
found = .FALSE.
smin = 1.0e15
smax = 0.0
armax = -1.0e38
if (vnorm(1,inod) .ne. 0.0 .or. vnorm(2,inod) .ne. 0.0 .or.
* vnorm(3,inod) .ne. 0.0) then
X0 = X(inod)
Y0 = Y(inod)
Z0 = Z(inod)
AI = VNORM(1, inod)
BJ = VNORM(2, inod)
CK = VNORM(3, inod)
do 110 ifac = 1, neessm
A = plane(1,ifac)
B = plane(2,ifac)
C = plane(3,ifac)
D = plane(4,ifac)
C ... If denom == 0, then node normal is parallel to plane
DENOM = A*AI + B*BJ + C*CK
if (denom .ne. 0.0) then
T = -(A*X0 + B*Y0 + C*Z0 - D) / DENOM
C ... Intersection point
PI(1) = X0 + T * AI
PI(2) = Y0 + T * BJ
PI(3) = Z0 + T * CK
if (t .lt. 0.0) go to 100
dx = abs(x(inod)-pi(1))
if (dx .gt. delmax) go to 100
dy = abs(y(inod)-pi(2))
if (dy .gt. delmax) go to 100
dz = abs(z(inod)-pi(3))
if (dz .gt. delmax) go to 100
delta2 = dx**2 + dy**2 + dz**2
if (delta2 .le. delmx2) then
C ... See if intersection point is inside face.
XI = X(LTNESM(1,IFAC))
YI = Y(LTNESM(1,IFAC))
ZI = Z(LTNESM(1,IFAC))
XJ = X(LTNESM(2,IFAC))
YJ = Y(LTNESM(2,IFAC))
ZJ = Z(LTNESM(2,IFAC))
XK = X(LTNESM(3,IFAC))
YK = Y(LTNESM(3,IFAC))
ZK = Z(LTNESM(3,IFAC))
XL = X(LTNESM(4,IFAC))
YL = Y(LTNESM(4,IFAC))
ZL = Z(LTNESM(4,IFAC))
area1 = trarea(xi, yi, zi, xj, yj, zj,
* pi(1), pi(2), pi(3),
* plane(1,ifac))
area2 = trarea(xj, yj, zj, xk, yk, zk,
* pi(1), pi(2), pi(3),
* plane(1,ifac))
area3 = trarea(xk, yk, zk, xl, yl, zl,
* pi(1), pi(2), pi(3),
* plane(1,ifac))
area4 = trarea(xl, yl, zl, xi, yi, zi,
* pi(1), pi(2), pi(3),
* plane(1,ifac))
if (area1 .ge. 0.0 .and. area2 .ge. 0.0 .and.
* area3 .ge. 0.0 .and. area4 .ge. 0.0) then
C ... If we made it this far, then the intersection point is inside the
C face. Save the minimum distance found so far.
dmin = min(delta2, dmin)
dmax = max(delta2, dmax)
match = match + 1
go to 120
else if (area1 .ge. -toler .and. area2 .ge. -toler .and.
* area3 .ge. -toler .and. area4 .ge. -toler) then
C ... If we made it this far, then the intersection point is outside the
C face, but inside the toler. Save the minimum distance found so far.
found = .true.
smin = min(delta2, smin)
smax = max(delta2, smax)
else
C ... The node is outside the tolerance, find the most negative of the area*
C for this face/node combination. Save the maximum (closest to zero)
C for all face/node combinations.
armin = MIN(area1, area2, area3, area4)
armax = MAX(armin, armax)
end if
end if
end if
100 continue
110 continue
if (found) then
C ... The node did not intersect any face, but it did find one within
C the tolerance. Use the closest one
dmin = smin
end if
end if
120 continue
130 continue
C ... Update the node positions based on the minimum distance found
C and the specified vector.
if (match .gt. 0) then
AI = vector(1)
BJ = vector(2)
CK = vector(3)
dmin = sqrt(dmin)
dmin = dmin - gap
do 140 inod=1, numnp
if (index(inod) .eq. 1) then
X0 = X(inod)
Y0 = Y(inod)
Z0 = Z(inod)
C ... Update the nodes position (Currently, assumes in vector direction)
X(inod) = X0 + dmin * AI
Y(inod) = Y0 + dmin * BJ
Z(inod) = Z0 + dmin * CK
end if
140 continue
write (*, 10020) dmin
else
write (*,*) 'No node movement.'
end if
10020 format(/,'Node movement = ',1pe11.4)
return
end