You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
148 lines
5.6 KiB
148 lines
5.6 KiB
2 years ago
|
// This file is part of Eigen, a lightweight C++ template library
|
||
|
// for linear algebra.
|
||
|
//
|
||
|
// Copyright (C) 2016
|
||
|
// Mehdi Goli Codeplay Software Ltd.
|
||
|
// Ralph Potter Codeplay Software Ltd.
|
||
|
// Luke Iwanski Codeplay Software Ltd.
|
||
|
// Contact: <eigen@codeplay.com>
|
||
|
//
|
||
|
// This Source Code Form is subject to the terms of the Mozilla
|
||
|
// Public License v. 2.0. If a copy of the MPL was not distributed
|
||
|
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
||
|
|
||
|
#define EIGEN_TEST_NO_LONGDOUBLE
|
||
|
#define EIGEN_TEST_NO_COMPLEX
|
||
|
|
||
|
#define EIGEN_DEFAULT_DENSE_INDEX_TYPE int64_t
|
||
|
#define EIGEN_USE_SYCL
|
||
|
static const float error_threshold =1e-8f;
|
||
|
|
||
|
#include "main.h"
|
||
|
#include <unsupported/Eigen/CXX11/Tensor>
|
||
|
|
||
|
using Eigen::Tensor;
|
||
|
struct Generator1D {
|
||
|
Generator1D() { }
|
||
|
|
||
|
float operator()(const array<Eigen::DenseIndex, 1>& coordinates) const {
|
||
|
return coordinates[0];
|
||
|
}
|
||
|
};
|
||
|
|
||
|
template <typename DataType, int DataLayout, typename IndexType>
|
||
|
static void test_1D_sycl(const Eigen::SyclDevice& sycl_device)
|
||
|
{
|
||
|
|
||
|
IndexType sizeDim1 = 6;
|
||
|
array<IndexType, 1> tensorRange = {{sizeDim1}};
|
||
|
Tensor<DataType, 1, DataLayout,IndexType> vec(tensorRange);
|
||
|
Tensor<DataType, 1, DataLayout,IndexType> result(tensorRange);
|
||
|
|
||
|
const size_t tensorBuffSize =vec.size()*sizeof(DataType);
|
||
|
DataType* gpu_data_vec = static_cast<DataType*>(sycl_device.allocate(tensorBuffSize));
|
||
|
DataType* gpu_data_result = static_cast<DataType*>(sycl_device.allocate(tensorBuffSize));
|
||
|
|
||
|
TensorMap<Tensor<DataType, 1, DataLayout,IndexType>> gpu_vec(gpu_data_vec, tensorRange);
|
||
|
TensorMap<Tensor<DataType, 1, DataLayout,IndexType>> gpu_result(gpu_data_result, tensorRange);
|
||
|
|
||
|
sycl_device.memcpyHostToDevice(gpu_data_vec, vec.data(), tensorBuffSize);
|
||
|
gpu_result.device(sycl_device)=gpu_vec.generate(Generator1D());
|
||
|
sycl_device.memcpyDeviceToHost(result.data(), gpu_data_result, tensorBuffSize);
|
||
|
|
||
|
for (IndexType i = 0; i < 6; ++i) {
|
||
|
VERIFY_IS_EQUAL(result(i), i);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
struct Generator2D {
|
||
|
Generator2D() { }
|
||
|
|
||
|
float operator()(const array<Eigen::DenseIndex, 2>& coordinates) const {
|
||
|
return 3 * coordinates[0] + 11 * coordinates[1];
|
||
|
}
|
||
|
};
|
||
|
|
||
|
template <typename DataType, int DataLayout, typename IndexType>
|
||
|
static void test_2D_sycl(const Eigen::SyclDevice& sycl_device)
|
||
|
{
|
||
|
IndexType sizeDim1 = 5;
|
||
|
IndexType sizeDim2 = 7;
|
||
|
array<IndexType, 2> tensorRange = {{sizeDim1, sizeDim2}};
|
||
|
Tensor<DataType, 2, DataLayout,IndexType> matrix(tensorRange);
|
||
|
Tensor<DataType, 2, DataLayout,IndexType> result(tensorRange);
|
||
|
|
||
|
const size_t tensorBuffSize =matrix.size()*sizeof(DataType);
|
||
|
DataType* gpu_data_matrix = static_cast<DataType*>(sycl_device.allocate(tensorBuffSize));
|
||
|
DataType* gpu_data_result = static_cast<DataType*>(sycl_device.allocate(tensorBuffSize));
|
||
|
|
||
|
TensorMap<Tensor<DataType, 2, DataLayout,IndexType>> gpu_matrix(gpu_data_matrix, tensorRange);
|
||
|
TensorMap<Tensor<DataType, 2, DataLayout,IndexType>> gpu_result(gpu_data_result, tensorRange);
|
||
|
|
||
|
sycl_device.memcpyHostToDevice(gpu_data_matrix, matrix.data(), tensorBuffSize);
|
||
|
gpu_result.device(sycl_device)=gpu_matrix.generate(Generator2D());
|
||
|
sycl_device.memcpyDeviceToHost(result.data(), gpu_data_result, tensorBuffSize);
|
||
|
|
||
|
for (IndexType i = 0; i < 5; ++i) {
|
||
|
for (IndexType j = 0; j < 5; ++j) {
|
||
|
VERIFY_IS_EQUAL(result(i, j), 3*i + 11*j);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
template <typename DataType, int DataLayout, typename IndexType>
|
||
|
static void test_gaussian_sycl(const Eigen::SyclDevice& sycl_device)
|
||
|
{
|
||
|
IndexType rows = 32;
|
||
|
IndexType cols = 48;
|
||
|
array<DataType, 2> means;
|
||
|
means[0] = rows / 2.0f;
|
||
|
means[1] = cols / 2.0f;
|
||
|
array<DataType, 2> std_devs;
|
||
|
std_devs[0] = 3.14f;
|
||
|
std_devs[1] = 2.7f;
|
||
|
internal::GaussianGenerator<DataType, Eigen::DenseIndex, 2> gaussian_gen(means, std_devs);
|
||
|
|
||
|
array<IndexType, 2> tensorRange = {{rows, cols}};
|
||
|
Tensor<DataType, 2, DataLayout,IndexType> matrix(tensorRange);
|
||
|
Tensor<DataType, 2, DataLayout,IndexType> result(tensorRange);
|
||
|
|
||
|
const size_t tensorBuffSize =matrix.size()*sizeof(DataType);
|
||
|
DataType* gpu_data_matrix = static_cast<DataType*>(sycl_device.allocate(tensorBuffSize));
|
||
|
DataType* gpu_data_result = static_cast<DataType*>(sycl_device.allocate(tensorBuffSize));
|
||
|
|
||
|
TensorMap<Tensor<DataType, 2, DataLayout,IndexType>> gpu_matrix(gpu_data_matrix, tensorRange);
|
||
|
TensorMap<Tensor<DataType, 2, DataLayout,IndexType>> gpu_result(gpu_data_result, tensorRange);
|
||
|
|
||
|
sycl_device.memcpyHostToDevice(gpu_data_matrix, matrix.data(), tensorBuffSize);
|
||
|
gpu_result.device(sycl_device)=gpu_matrix.generate(gaussian_gen);
|
||
|
sycl_device.memcpyDeviceToHost(result.data(), gpu_data_result, tensorBuffSize);
|
||
|
|
||
|
for (IndexType i = 0; i < rows; ++i) {
|
||
|
for (IndexType j = 0; j < cols; ++j) {
|
||
|
DataType g_rows = powf(rows/2.0f - i, 2) / (3.14f * 3.14f) * 0.5f;
|
||
|
DataType g_cols = powf(cols/2.0f - j, 2) / (2.7f * 2.7f) * 0.5f;
|
||
|
DataType gaussian = expf(-g_rows - g_cols);
|
||
|
Eigen::internal::isApprox(result(i, j), gaussian, error_threshold);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
template<typename DataType, typename dev_Selector> void sycl_generator_test_per_device(dev_Selector s){
|
||
|
QueueInterface queueInterface(s);
|
||
|
auto sycl_device = Eigen::SyclDevice(&queueInterface);
|
||
|
test_1D_sycl<DataType, RowMajor, int64_t>(sycl_device);
|
||
|
test_1D_sycl<DataType, ColMajor, int64_t>(sycl_device);
|
||
|
test_2D_sycl<DataType, RowMajor, int64_t>(sycl_device);
|
||
|
test_2D_sycl<DataType, ColMajor, int64_t>(sycl_device);
|
||
|
test_gaussian_sycl<DataType, RowMajor, int64_t>(sycl_device);
|
||
|
test_gaussian_sycl<DataType, ColMajor, int64_t>(sycl_device);
|
||
|
}
|
||
|
EIGEN_DECLARE_TEST(cxx11_tensor_generator_sycl)
|
||
|
{
|
||
|
for (const auto& device :Eigen::get_sycl_supported_devices()) {
|
||
|
CALL_SUBTEST(sycl_generator_test_per_device<float>(device));
|
||
|
}
|
||
|
}
|