You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1093 lines
61 KiB
1093 lines
61 KiB
2 years ago
|
// This file is part of Eigen, a lightweight C++ template library
|
||
|
// for linear algebra.
|
||
|
//
|
||
|
// Copyright (C) 2016
|
||
|
// Mehdi Goli Codeplay Software Ltd.
|
||
|
// Ralph Potter Codeplay Software Ltd.
|
||
|
// Luke Iwanski Codeplay Software Ltd.
|
||
|
// Contact: <eigen@codeplay.com>
|
||
|
//
|
||
|
// This Source Code Form is subject to the terms of the Mozilla
|
||
|
// Public License v. 2.0. If a copy of the MPL was not distributed
|
||
|
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
||
|
|
||
|
#define EIGEN_TEST_NO_LONGDOUBLE
|
||
|
#define EIGEN_TEST_NO_COMPLEX
|
||
|
|
||
|
#define EIGEN_DEFAULT_DENSE_INDEX_TYPE int64_t
|
||
|
#define EIGEN_USE_SYCL
|
||
|
|
||
|
#include "main.h"
|
||
|
#include <unsupported/Eigen/CXX11/Tensor>
|
||
|
|
||
|
using Eigen::Tensor;
|
||
|
static const int DataLayout = ColMajor;
|
||
|
|
||
|
template <typename DataType, typename IndexType>
|
||
|
static void test_simple_image_patch_sycl(const Eigen::SyclDevice& sycl_device)
|
||
|
{
|
||
|
IndexType sizeDim1 = 2;
|
||
|
IndexType sizeDim2 = 3;
|
||
|
IndexType sizeDim3 = 5;
|
||
|
IndexType sizeDim4 = 7;
|
||
|
array<IndexType, 4> tensorColMajorRange = {{sizeDim1, sizeDim2, sizeDim3, sizeDim4}};
|
||
|
array<IndexType, 4> tensorRowMajorRange = {{sizeDim4, sizeDim3, sizeDim2, sizeDim1}};
|
||
|
Tensor<DataType, 4, DataLayout,IndexType> tensor_col_major(tensorColMajorRange);
|
||
|
Tensor<DataType, 4, RowMajor,IndexType> tensor_row_major(tensorRowMajorRange);
|
||
|
tensor_col_major.setRandom();
|
||
|
|
||
|
DataType* gpu_data_col_major = static_cast<DataType*>(sycl_device.allocate(tensor_col_major.size()*sizeof(DataType)));
|
||
|
DataType* gpu_data_row_major = static_cast<DataType*>(sycl_device.allocate(tensor_row_major.size()*sizeof(DataType)));
|
||
|
TensorMap<Tensor<DataType, 4, ColMajor, IndexType>> gpu_col_major(gpu_data_col_major, tensorColMajorRange);
|
||
|
TensorMap<Tensor<DataType, 4, RowMajor, IndexType>> gpu_row_major(gpu_data_row_major, tensorRowMajorRange);
|
||
|
|
||
|
sycl_device.memcpyHostToDevice(gpu_data_col_major, tensor_col_major.data(),(tensor_col_major.size())*sizeof(DataType));
|
||
|
gpu_row_major.device(sycl_device)=gpu_col_major.swap_layout();
|
||
|
sycl_device.memcpyDeviceToHost(tensor_row_major.data(), gpu_data_row_major, (tensor_col_major.size())*sizeof(DataType));
|
||
|
|
||
|
VERIFY_IS_EQUAL(tensor_col_major.dimension(0), tensor_row_major.dimension(3));
|
||
|
VERIFY_IS_EQUAL(tensor_col_major.dimension(1), tensor_row_major.dimension(2));
|
||
|
VERIFY_IS_EQUAL(tensor_col_major.dimension(2), tensor_row_major.dimension(1));
|
||
|
VERIFY_IS_EQUAL(tensor_col_major.dimension(3), tensor_row_major.dimension(0));
|
||
|
|
||
|
// Single pixel patch: ColMajor
|
||
|
array<IndexType, 5> patchColMajorTensorRange={{sizeDim1, 1, 1, sizeDim2*sizeDim3, sizeDim4}};
|
||
|
Tensor<DataType, 5, DataLayout,IndexType> single_patch_col_major(patchColMajorTensorRange);
|
||
|
size_t patchTensorBuffSize =single_patch_col_major.size()*sizeof(DataType);
|
||
|
DataType* gpu_data_single_patch_col_major = static_cast<DataType*>(sycl_device.allocate(patchTensorBuffSize));
|
||
|
TensorMap<Tensor<DataType, 5, DataLayout,IndexType>> gpu_single_patch_col_major(gpu_data_single_patch_col_major, patchColMajorTensorRange);
|
||
|
gpu_single_patch_col_major.device(sycl_device)=gpu_col_major.extract_image_patches(1, 1);
|
||
|
sycl_device.memcpyDeviceToHost(single_patch_col_major.data(), gpu_data_single_patch_col_major, patchTensorBuffSize);
|
||
|
|
||
|
VERIFY_IS_EQUAL(single_patch_col_major.dimension(0), 2);
|
||
|
VERIFY_IS_EQUAL(single_patch_col_major.dimension(1), 1);
|
||
|
VERIFY_IS_EQUAL(single_patch_col_major.dimension(2), 1);
|
||
|
VERIFY_IS_EQUAL(single_patch_col_major.dimension(3), 3*5);
|
||
|
VERIFY_IS_EQUAL(single_patch_col_major.dimension(4), 7);
|
||
|
|
||
|
// Single pixel patch: RowMajor
|
||
|
array<IndexType, 5> patchRowMajorTensorRange={{sizeDim4, sizeDim2*sizeDim3, 1, 1, sizeDim1}};
|
||
|
Tensor<DataType, 5, RowMajor,IndexType> single_patch_row_major(patchRowMajorTensorRange);
|
||
|
patchTensorBuffSize =single_patch_row_major.size()*sizeof(DataType);
|
||
|
DataType* gpu_data_single_patch_row_major = static_cast<DataType*>(sycl_device.allocate(patchTensorBuffSize));
|
||
|
TensorMap<Tensor<DataType, 5, RowMajor,IndexType>> gpu_single_patch_row_major(gpu_data_single_patch_row_major, patchRowMajorTensorRange);
|
||
|
gpu_single_patch_row_major.device(sycl_device)=gpu_row_major.extract_image_patches(1, 1);
|
||
|
sycl_device.memcpyDeviceToHost(single_patch_row_major.data(), gpu_data_single_patch_row_major, patchTensorBuffSize);
|
||
|
|
||
|
VERIFY_IS_EQUAL(single_patch_row_major.dimension(0), 7);
|
||
|
VERIFY_IS_EQUAL(single_patch_row_major.dimension(1), 3*5);
|
||
|
VERIFY_IS_EQUAL(single_patch_row_major.dimension(2), 1);
|
||
|
VERIFY_IS_EQUAL(single_patch_row_major.dimension(3), 1);
|
||
|
VERIFY_IS_EQUAL(single_patch_row_major.dimension(4), 2);
|
||
|
|
||
|
for (IndexType i = 0; i < tensor_col_major.size(); ++i) {
|
||
|
// ColMajor
|
||
|
if (tensor_col_major.data()[i] != single_patch_col_major.data()[i]) {
|
||
|
std::cout << "Mismatch detected at index colmajor " << i << " : "
|
||
|
<< tensor_col_major.data()[i] << " vs " << single_patch_col_major.data()[i]
|
||
|
<< std::endl;
|
||
|
}
|
||
|
VERIFY_IS_EQUAL(single_patch_col_major.data()[i], tensor_col_major.data()[i]);
|
||
|
// RowMajor
|
||
|
if (tensor_row_major.data()[i] != single_patch_row_major.data()[i]) {
|
||
|
std::cout << "Mismatch detected at index row major" << i << " : "
|
||
|
<< tensor_row_major.data()[i] << " vs "
|
||
|
<< single_patch_row_major.data()[i] << std::endl;
|
||
|
}
|
||
|
VERIFY_IS_EQUAL(single_patch_row_major.data()[i],
|
||
|
tensor_row_major.data()[i]);
|
||
|
VERIFY_IS_EQUAL(tensor_col_major.data()[i], tensor_row_major.data()[i]);
|
||
|
VERIFY_IS_EQUAL(single_patch_col_major.data()[i],
|
||
|
single_patch_row_major.data()[i]);
|
||
|
}
|
||
|
|
||
|
|
||
|
// Entire image patch: ColMajor
|
||
|
patchColMajorTensorRange={{sizeDim1, sizeDim2, sizeDim3, sizeDim2*sizeDim3, sizeDim4}};
|
||
|
Tensor<DataType, 5, DataLayout,IndexType> entire_image_patch_col_major(patchColMajorTensorRange);
|
||
|
patchTensorBuffSize =entire_image_patch_col_major.size()*sizeof(DataType);
|
||
|
DataType* gpu_data_entire_image_patch_col_major = static_cast<DataType*>(sycl_device.allocate(patchTensorBuffSize));
|
||
|
TensorMap<Tensor<DataType, 5, DataLayout,IndexType>> gpu_entire_image_patch_col_major(gpu_data_entire_image_patch_col_major, patchColMajorTensorRange);
|
||
|
gpu_entire_image_patch_col_major.device(sycl_device)=gpu_col_major.extract_image_patches(3, 5);
|
||
|
sycl_device.memcpyDeviceToHost(entire_image_patch_col_major.data(), gpu_data_entire_image_patch_col_major, patchTensorBuffSize);
|
||
|
|
||
|
VERIFY_IS_EQUAL(entire_image_patch_col_major.dimension(0), 2);
|
||
|
VERIFY_IS_EQUAL(entire_image_patch_col_major.dimension(1), 3);
|
||
|
VERIFY_IS_EQUAL(entire_image_patch_col_major.dimension(2), 5);
|
||
|
VERIFY_IS_EQUAL(entire_image_patch_col_major.dimension(3), 3*5);
|
||
|
VERIFY_IS_EQUAL(entire_image_patch_col_major.dimension(4), 7);
|
||
|
|
||
|
// Entire image patch: RowMajor
|
||
|
patchRowMajorTensorRange={{sizeDim4, sizeDim2*sizeDim3, sizeDim3, sizeDim2, sizeDim1}};
|
||
|
Tensor<DataType, 5, RowMajor,IndexType> entire_image_patch_row_major(patchRowMajorTensorRange);
|
||
|
patchTensorBuffSize =entire_image_patch_row_major.size()*sizeof(DataType);
|
||
|
DataType* gpu_data_entire_image_patch_row_major = static_cast<DataType*>(sycl_device.allocate(patchTensorBuffSize));
|
||
|
TensorMap<Tensor<DataType, 5, RowMajor,IndexType>> gpu_entire_image_patch_row_major(gpu_data_entire_image_patch_row_major, patchRowMajorTensorRange);
|
||
|
gpu_entire_image_patch_row_major.device(sycl_device)=gpu_row_major.extract_image_patches(3, 5);
|
||
|
sycl_device.memcpyDeviceToHost(entire_image_patch_row_major.data(), gpu_data_entire_image_patch_row_major, patchTensorBuffSize);
|
||
|
|
||
|
VERIFY_IS_EQUAL(entire_image_patch_row_major.dimension(0), 7);
|
||
|
VERIFY_IS_EQUAL(entire_image_patch_row_major.dimension(1), 3*5);
|
||
|
VERIFY_IS_EQUAL(entire_image_patch_row_major.dimension(2), 5);
|
||
|
VERIFY_IS_EQUAL(entire_image_patch_row_major.dimension(3), 3);
|
||
|
VERIFY_IS_EQUAL(entire_image_patch_row_major.dimension(4), 2);
|
||
|
|
||
|
for (IndexType i = 0; i < 3; ++i) {
|
||
|
for (IndexType j = 0; j < 5; ++j) {
|
||
|
IndexType patchId = i+3*j;
|
||
|
for (IndexType r = 0; r < 3; ++r) {
|
||
|
for (IndexType c = 0; c < 5; ++c) {
|
||
|
for (IndexType d = 0; d < 2; ++d) {
|
||
|
for (IndexType b = 0; b < 7; ++b) {
|
||
|
DataType expected_col_major = 0.0f;
|
||
|
DataType expected_row_major = 0.0f;
|
||
|
if (r-1+i >= 0 && c-2+j >= 0 && r-1+i < 3 && c-2+j < 5) {
|
||
|
expected_col_major = tensor_col_major(d, r-1+i, c-2+j, b);
|
||
|
expected_row_major = tensor_row_major(b, c-2+j, r-1+i, d);
|
||
|
}
|
||
|
// ColMajor
|
||
|
if (entire_image_patch_col_major(d, r, c, patchId, b) != expected_col_major) {
|
||
|
std::cout << "Mismatch detected at index i=" << i << " j=" << j << " r=" << r << " c=" << c << " d=" << d << " b=" << b << std::endl;
|
||
|
}
|
||
|
VERIFY_IS_EQUAL(entire_image_patch_col_major(d, r, c, patchId, b), expected_col_major);
|
||
|
// RowMajor
|
||
|
if (entire_image_patch_row_major(b, patchId, c, r, d) !=
|
||
|
expected_row_major) {
|
||
|
std::cout << "Mismatch detected at index i=" << i << " j=" << j
|
||
|
<< " r=" << r << " c=" << c << " d=" << d << " b=" << b
|
||
|
<< std::endl;
|
||
|
}
|
||
|
VERIFY_IS_EQUAL(entire_image_patch_row_major(b, patchId, c, r, d),
|
||
|
expected_row_major);
|
||
|
// Check that ColMajor and RowMajor agree.
|
||
|
VERIFY_IS_EQUAL(expected_col_major, expected_row_major);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// 2D patch: ColMajor
|
||
|
patchColMajorTensorRange={{sizeDim1, 2, 2, sizeDim2*sizeDim3, sizeDim4}};
|
||
|
Tensor<DataType, 5, DataLayout,IndexType> twod_patch_col_major(patchColMajorTensorRange);
|
||
|
patchTensorBuffSize =twod_patch_col_major.size()*sizeof(DataType);
|
||
|
DataType* gpu_data_twod_patch_col_major = static_cast<DataType*>(sycl_device.allocate(patchTensorBuffSize));
|
||
|
TensorMap<Tensor<DataType, 5, DataLayout,IndexType>> gpu_twod_patch_col_major(gpu_data_twod_patch_col_major, patchColMajorTensorRange);
|
||
|
gpu_twod_patch_col_major.device(sycl_device)=gpu_col_major.extract_image_patches(2, 2);
|
||
|
sycl_device.memcpyDeviceToHost(twod_patch_col_major.data(), gpu_data_twod_patch_col_major, patchTensorBuffSize);
|
||
|
|
||
|
VERIFY_IS_EQUAL(twod_patch_col_major.dimension(0), 2);
|
||
|
VERIFY_IS_EQUAL(twod_patch_col_major.dimension(1), 2);
|
||
|
VERIFY_IS_EQUAL(twod_patch_col_major.dimension(2), 2);
|
||
|
VERIFY_IS_EQUAL(twod_patch_col_major.dimension(3), 3*5);
|
||
|
VERIFY_IS_EQUAL(twod_patch_col_major.dimension(4), 7);
|
||
|
|
||
|
// 2D patch: RowMajor
|
||
|
patchRowMajorTensorRange={{sizeDim4, sizeDim2*sizeDim3, 2, 2, sizeDim1}};
|
||
|
Tensor<DataType, 5, RowMajor,IndexType> twod_patch_row_major(patchRowMajorTensorRange);
|
||
|
patchTensorBuffSize =twod_patch_row_major.size()*sizeof(DataType);
|
||
|
DataType* gpu_data_twod_patch_row_major = static_cast<DataType*>(sycl_device.allocate(patchTensorBuffSize));
|
||
|
TensorMap<Tensor<DataType, 5, RowMajor,IndexType>> gpu_twod_patch_row_major(gpu_data_twod_patch_row_major, patchRowMajorTensorRange);
|
||
|
gpu_twod_patch_row_major.device(sycl_device)=gpu_row_major.extract_image_patches(2, 2);
|
||
|
sycl_device.memcpyDeviceToHost(twod_patch_row_major.data(), gpu_data_twod_patch_row_major, patchTensorBuffSize);
|
||
|
|
||
|
VERIFY_IS_EQUAL(twod_patch_row_major.dimension(0), 7);
|
||
|
VERIFY_IS_EQUAL(twod_patch_row_major.dimension(1), 3*5);
|
||
|
VERIFY_IS_EQUAL(twod_patch_row_major.dimension(2), 2);
|
||
|
VERIFY_IS_EQUAL(twod_patch_row_major.dimension(3), 2);
|
||
|
VERIFY_IS_EQUAL(twod_patch_row_major.dimension(4), 2);
|
||
|
|
||
|
|
||
|
// Based on the calculation described in TensorTraits.h, padding happens to be 0.
|
||
|
IndexType row_padding = 0;
|
||
|
IndexType col_padding = 0;
|
||
|
IndexType stride = 1;
|
||
|
|
||
|
for (IndexType i = 0; i < 3; ++i) {
|
||
|
for (IndexType j = 0; j < 5; ++j) {
|
||
|
IndexType patchId = i+3*j;
|
||
|
for (IndexType r = 0; r < 2; ++r) {
|
||
|
for (IndexType c = 0; c < 2; ++c) {
|
||
|
for (IndexType d = 0; d < 2; ++d) {
|
||
|
for (IndexType b = 0; b < 7; ++b) {
|
||
|
DataType expected_col_major = 0.0f;
|
||
|
DataType expected_row_major = 0.0f;
|
||
|
IndexType row_offset = r*stride + i - row_padding;
|
||
|
IndexType col_offset = c*stride + j - col_padding;
|
||
|
// ColMajor
|
||
|
if (row_offset >= 0 && col_offset >= 0 && row_offset < tensor_col_major.dimension(1) && col_offset < tensor_col_major.dimension(2)) {
|
||
|
expected_col_major = tensor_col_major(d, row_offset, col_offset, b);
|
||
|
}
|
||
|
if (twod_patch_col_major(d, r, c, patchId, b) != expected_col_major) {
|
||
|
std::cout << "Mismatch detected at index i=" << i << " j=" << j << " r=" << r << " c=" << c << " d=" << d << " b=" << b << std::endl;
|
||
|
}
|
||
|
VERIFY_IS_EQUAL(twod_patch_col_major(d, r, c, patchId, b), expected_col_major);
|
||
|
|
||
|
// RowMajor
|
||
|
if (row_offset >= 0 && col_offset >= 0 && row_offset < tensor_row_major.dimension(2) && col_offset < tensor_row_major.dimension(1)) {
|
||
|
expected_row_major = tensor_row_major(b, col_offset, row_offset, d);
|
||
|
|
||
|
}
|
||
|
if (twod_patch_row_major(b, patchId, c, r, d) != expected_row_major) {
|
||
|
std::cout << "Mismatch detected at index i=" << i << " j=" << j << " r=" << r << " c=" << c << " d=" << d << " b=" << b << std::endl;
|
||
|
}
|
||
|
VERIFY_IS_EQUAL(twod_patch_row_major(b, patchId, c, r, d), expected_row_major);
|
||
|
// Check that ColMajor and RowMajor agree.
|
||
|
VERIFY_IS_EQUAL(expected_col_major, expected_row_major);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
sycl_device.deallocate(gpu_data_col_major);
|
||
|
sycl_device.deallocate(gpu_data_row_major);
|
||
|
sycl_device.deallocate(gpu_data_single_patch_col_major);
|
||
|
sycl_device.deallocate(gpu_data_single_patch_row_major);
|
||
|
sycl_device.deallocate(gpu_data_entire_image_patch_col_major);
|
||
|
sycl_device.deallocate(gpu_data_entire_image_patch_row_major);
|
||
|
sycl_device.deallocate(gpu_data_twod_patch_col_major);
|
||
|
sycl_device.deallocate(gpu_data_twod_patch_row_major);
|
||
|
|
||
|
}
|
||
|
|
||
|
|
||
|
// Verifies VALID padding (no padding) with incrementing values.
|
||
|
template <typename DataType, typename IndexType>
|
||
|
static void test_patch_padding_valid_sycl(const Eigen::SyclDevice& sycl_device){
|
||
|
IndexType input_depth = 3;
|
||
|
IndexType input_rows = 3;
|
||
|
IndexType input_cols = 3;
|
||
|
IndexType input_batches = 1;
|
||
|
IndexType ksize = 2; // Corresponds to the Rows and Cols for tensor.extract_image_patches<>.
|
||
|
IndexType stride = 2; // Only same stride is supported.
|
||
|
|
||
|
array<IndexType, 4> tensorColMajorRange = {{input_depth, input_rows, input_cols, input_batches}};
|
||
|
array<IndexType, 4> tensorRowMajorRange = {{input_batches, input_cols, input_rows, input_depth}};
|
||
|
Tensor<DataType, 4, DataLayout,IndexType> tensor_col_major(tensorColMajorRange);
|
||
|
Tensor<DataType, 4, RowMajor,IndexType> tensor_row_major(tensorRowMajorRange);
|
||
|
|
||
|
DataType* gpu_data_col_major = static_cast<DataType*>(sycl_device.allocate(tensor_col_major.size()*sizeof(DataType)));
|
||
|
DataType* gpu_data_row_major = static_cast<DataType*>(sycl_device.allocate(tensor_row_major.size()*sizeof(DataType)));
|
||
|
TensorMap<Tensor<DataType, 4, ColMajor, IndexType>> gpu_col_major(gpu_data_col_major, tensorColMajorRange);
|
||
|
TensorMap<Tensor<DataType, 4, RowMajor, IndexType>> gpu_row_major(gpu_data_row_major, tensorRowMajorRange);
|
||
|
|
||
|
sycl_device.memcpyHostToDevice(gpu_data_col_major, tensor_col_major.data(),(tensor_col_major.size())*sizeof(DataType));
|
||
|
gpu_row_major.device(sycl_device)=gpu_col_major.swap_layout();
|
||
|
sycl_device.memcpyDeviceToHost(tensor_row_major.data(), gpu_data_row_major, (tensor_col_major.size())*sizeof(DataType));
|
||
|
|
||
|
VERIFY_IS_EQUAL(tensor_col_major.dimension(0), tensor_row_major.dimension(3));
|
||
|
VERIFY_IS_EQUAL(tensor_col_major.dimension(1), tensor_row_major.dimension(2));
|
||
|
VERIFY_IS_EQUAL(tensor_col_major.dimension(2), tensor_row_major.dimension(1));
|
||
|
VERIFY_IS_EQUAL(tensor_col_major.dimension(3), tensor_row_major.dimension(0));
|
||
|
|
||
|
// Initializes tensor with incrementing numbers.
|
||
|
for (IndexType i = 0; i < tensor_col_major.size(); ++i) {
|
||
|
tensor_col_major.data()[i] = i + 1;
|
||
|
}
|
||
|
// ColMajor
|
||
|
array<IndexType, 5> patchColMajorTensorRange={{input_depth, ksize, ksize, 1, input_batches}};
|
||
|
Tensor<DataType, 5, DataLayout,IndexType> result_col_major(patchColMajorTensorRange);
|
||
|
size_t patchTensorBuffSize =result_col_major.size()*sizeof(DataType);
|
||
|
DataType* gpu_data_result_col_major = static_cast<DataType*>(sycl_device.allocate(patchTensorBuffSize));
|
||
|
TensorMap<Tensor<DataType, 5, DataLayout,IndexType>> gpu_result_col_major(gpu_data_result_col_major, patchColMajorTensorRange);
|
||
|
gpu_result_col_major.device(sycl_device)=gpu_col_major.extract_image_patches(ksize, ksize, stride, stride, 1, 1, PADDING_VALID);
|
||
|
sycl_device.memcpyDeviceToHost(result_col_major.data(), gpu_data_result_col_major, patchTensorBuffSize);
|
||
|
|
||
|
VERIFY_IS_EQUAL(result_col_major.dimension(0), input_depth); // depth
|
||
|
VERIFY_IS_EQUAL(result_col_major.dimension(1), ksize); // kernel rows
|
||
|
VERIFY_IS_EQUAL(result_col_major.dimension(2), ksize); // kernel cols
|
||
|
VERIFY_IS_EQUAL(result_col_major.dimension(3), 1); // number of patches
|
||
|
VERIFY_IS_EQUAL(result_col_major.dimension(4), input_batches); // number of batches
|
||
|
|
||
|
// RowMajor
|
||
|
array<IndexType, 5> patchRowMajorTensorRange={{input_batches, 1, ksize, ksize, input_depth }};
|
||
|
Tensor<DataType, 5, RowMajor,IndexType> result_row_major(patchRowMajorTensorRange);
|
||
|
patchTensorBuffSize =result_row_major.size()*sizeof(DataType);
|
||
|
DataType* gpu_data_result_row_major = static_cast<DataType*>(sycl_device.allocate(patchTensorBuffSize));
|
||
|
TensorMap<Tensor<DataType, 5, RowMajor,IndexType>> gpu_result_row_major(gpu_data_result_row_major, patchRowMajorTensorRange);
|
||
|
gpu_result_row_major.device(sycl_device)=gpu_row_major.extract_image_patches(ksize, ksize, stride, stride, 1, 1, PADDING_VALID);
|
||
|
sycl_device.memcpyDeviceToHost(result_row_major.data(), gpu_data_result_row_major, patchTensorBuffSize);
|
||
|
|
||
|
VERIFY_IS_EQUAL(result_col_major.dimension(0), result_row_major.dimension(4));
|
||
|
VERIFY_IS_EQUAL(result_col_major.dimension(1), result_row_major.dimension(3));
|
||
|
VERIFY_IS_EQUAL(result_col_major.dimension(2), result_row_major.dimension(2));
|
||
|
VERIFY_IS_EQUAL(result_col_major.dimension(3), result_row_major.dimension(1));
|
||
|
VERIFY_IS_EQUAL(result_col_major.dimension(4), result_row_major.dimension(0));
|
||
|
|
||
|
// No padding is carried out.
|
||
|
IndexType row_padding = 0;
|
||
|
IndexType col_padding = 0;
|
||
|
|
||
|
for (IndexType i = 0; (i+stride+ksize-1) < input_rows; i += stride) { // input rows
|
||
|
for (IndexType j = 0; (j+stride+ksize-1) < input_cols; j += stride) { // input cols
|
||
|
IndexType patchId = i+input_rows*j;
|
||
|
for (IndexType r = 0; r < ksize; ++r) { // patch rows
|
||
|
for (IndexType c = 0; c < ksize; ++c) { // patch cols
|
||
|
for (IndexType d = 0; d < input_depth; ++d) { // depth
|
||
|
for (IndexType b = 0; b < input_batches; ++b) { // batch
|
||
|
DataType expected_col_major = 0.0f;
|
||
|
DataType expected_row_major = 0.0f;
|
||
|
IndexType row_offset = r + i - row_padding;
|
||
|
IndexType col_offset = c + j - col_padding;
|
||
|
if (row_offset >= 0 && col_offset >= 0 && row_offset < input_rows && col_offset < input_cols) {
|
||
|
expected_col_major = tensor_col_major(d, row_offset, col_offset, b);
|
||
|
expected_row_major = tensor_row_major(b, col_offset, row_offset, d);
|
||
|
}
|
||
|
// ColMajor
|
||
|
if (result_col_major(d, r, c, patchId, b) != expected_col_major) {
|
||
|
std::cout << "Mismatch detected at index i=" << i << " j=" << j << " r=" << r << " c=" << c << " d=" << d << " b=" << b << std::endl;
|
||
|
}
|
||
|
VERIFY_IS_EQUAL(result_col_major(d, r, c, patchId, b), expected_col_major);
|
||
|
// RowMajor
|
||
|
if (result_row_major(b, patchId, c, r, d) != expected_row_major) {
|
||
|
std::cout << "Mismatch detected at index i=" << i << " j=" << j << " r=" << r << " c=" << c << " d=" << d << " b=" << b << std::endl;
|
||
|
}
|
||
|
VERIFY_IS_EQUAL(result_row_major(b, patchId, c, r, d), expected_row_major);
|
||
|
// Check that ColMajor and RowMajor agree.
|
||
|
VERIFY_IS_EQUAL(expected_col_major, expected_row_major);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
sycl_device.deallocate(gpu_data_col_major);
|
||
|
sycl_device.deallocate(gpu_data_row_major);
|
||
|
sycl_device.deallocate(gpu_data_result_col_major);
|
||
|
sycl_device.deallocate(gpu_data_result_row_major);
|
||
|
}
|
||
|
|
||
|
// Verifies VALID padding (no padding) with the same value.
|
||
|
template <typename DataType, typename IndexType>
|
||
|
static void test_patch_padding_valid_same_value_sycl(const Eigen::SyclDevice& sycl_device){
|
||
|
IndexType input_depth = 1;
|
||
|
IndexType input_rows = 5;
|
||
|
IndexType input_cols = 5;
|
||
|
IndexType input_batches = 2;
|
||
|
IndexType ksize = 3; // Corresponds to the Rows and Cols for tensor.extract_image_patches<>.
|
||
|
IndexType stride = 2; // Only same stride is supported.
|
||
|
// ColMajor
|
||
|
|
||
|
array<IndexType, 4> tensorColMajorRange = {{input_depth, input_rows, input_cols, input_batches}};
|
||
|
array<IndexType, 4> tensorRowMajorRange = {{input_batches, input_cols, input_rows, input_depth}};
|
||
|
Tensor<DataType, 4, DataLayout,IndexType> tensor_col_major(tensorColMajorRange);
|
||
|
Tensor<DataType, 4, RowMajor,IndexType> tensor_row_major(tensorRowMajorRange);
|
||
|
|
||
|
DataType* gpu_data_col_major = static_cast<DataType*>(sycl_device.allocate(tensor_col_major.size()*sizeof(DataType)));
|
||
|
DataType* gpu_data_row_major = static_cast<DataType*>(sycl_device.allocate(tensor_row_major.size()*sizeof(DataType)));
|
||
|
TensorMap<Tensor<DataType, 4, ColMajor, IndexType>> gpu_col_major(gpu_data_col_major, tensorColMajorRange);
|
||
|
TensorMap<Tensor<DataType, 4, RowMajor, IndexType>> gpu_row_major(gpu_data_row_major, tensorRowMajorRange);
|
||
|
gpu_col_major.device(sycl_device)=gpu_col_major.constant(11.0f);
|
||
|
gpu_row_major.device(sycl_device)=gpu_col_major.swap_layout();
|
||
|
sycl_device.memcpyDeviceToHost(tensor_col_major.data(), gpu_data_col_major, (tensor_col_major.size())*sizeof(DataType));
|
||
|
sycl_device.memcpyDeviceToHost(tensor_row_major.data(), gpu_data_row_major, (tensor_row_major.size())*sizeof(DataType));
|
||
|
VERIFY_IS_EQUAL(tensor_col_major.dimension(0), tensor_row_major.dimension(3));
|
||
|
VERIFY_IS_EQUAL(tensor_col_major.dimension(1), tensor_row_major.dimension(2));
|
||
|
VERIFY_IS_EQUAL(tensor_col_major.dimension(2), tensor_row_major.dimension(1));
|
||
|
VERIFY_IS_EQUAL(tensor_col_major.dimension(3), tensor_row_major.dimension(0));
|
||
|
|
||
|
array<IndexType, 5> patchColMajorTensorRange={{input_depth, ksize, ksize, 4, input_batches}};
|
||
|
Tensor<DataType, 5, DataLayout,IndexType> result_col_major(patchColMajorTensorRange);
|
||
|
size_t patchTensorBuffSize =result_col_major.size()*sizeof(DataType);
|
||
|
DataType* gpu_data_result_col_major = static_cast<DataType*>(sycl_device.allocate(patchTensorBuffSize));
|
||
|
TensorMap<Tensor<DataType, 5, DataLayout,IndexType>> gpu_result_col_major(gpu_data_result_col_major, patchColMajorTensorRange);
|
||
|
gpu_result_col_major.device(sycl_device)=gpu_col_major.extract_image_patches(ksize, ksize, stride, stride, 1, 1, PADDING_VALID);
|
||
|
sycl_device.memcpyDeviceToHost(result_col_major.data(), gpu_data_result_col_major, patchTensorBuffSize);
|
||
|
|
||
|
VERIFY_IS_EQUAL(result_col_major.dimension(0), input_depth); // depth
|
||
|
VERIFY_IS_EQUAL(result_col_major.dimension(1), ksize); // kernel rows
|
||
|
VERIFY_IS_EQUAL(result_col_major.dimension(2), ksize); // kernel cols
|
||
|
VERIFY_IS_EQUAL(result_col_major.dimension(3), 4); // number of patches
|
||
|
VERIFY_IS_EQUAL(result_col_major.dimension(4), input_batches); // number of batches
|
||
|
|
||
|
// RowMajor
|
||
|
array<IndexType, 5> patchRowMajorTensorRange={{input_batches, 4, ksize, ksize, input_depth }};
|
||
|
Tensor<DataType, 5, RowMajor,IndexType> result_row_major(patchRowMajorTensorRange);
|
||
|
patchTensorBuffSize =result_row_major.size()*sizeof(DataType);
|
||
|
DataType* gpu_data_result_row_major = static_cast<DataType*>(sycl_device.allocate(patchTensorBuffSize));
|
||
|
TensorMap<Tensor<DataType, 5, RowMajor,IndexType>> gpu_result_row_major(gpu_data_result_row_major, patchRowMajorTensorRange);
|
||
|
gpu_result_row_major.device(sycl_device)=gpu_row_major.extract_image_patches(ksize, ksize, stride, stride, 1, 1, PADDING_VALID);
|
||
|
sycl_device.memcpyDeviceToHost(result_row_major.data(), gpu_data_result_row_major, patchTensorBuffSize);
|
||
|
|
||
|
VERIFY_IS_EQUAL(result_col_major.dimension(0), result_row_major.dimension(4));
|
||
|
VERIFY_IS_EQUAL(result_col_major.dimension(1), result_row_major.dimension(3));
|
||
|
VERIFY_IS_EQUAL(result_col_major.dimension(2), result_row_major.dimension(2));
|
||
|
VERIFY_IS_EQUAL(result_col_major.dimension(3), result_row_major.dimension(1));
|
||
|
VERIFY_IS_EQUAL(result_col_major.dimension(4), result_row_major.dimension(0));
|
||
|
|
||
|
// No padding is carried out.
|
||
|
IndexType row_padding = 0;
|
||
|
IndexType col_padding = 0;
|
||
|
|
||
|
for (IndexType i = 0; (i+stride+ksize-1) <= input_rows; i += stride) { // input rows
|
||
|
for (IndexType j = 0; (j+stride+ksize-1) <= input_cols; j += stride) { // input cols
|
||
|
IndexType patchId = i+input_rows*j;
|
||
|
for (IndexType r = 0; r < ksize; ++r) { // patch rows
|
||
|
for (IndexType c = 0; c < ksize; ++c) { // patch cols
|
||
|
for (IndexType d = 0; d < input_depth; ++d) { // depth
|
||
|
for (IndexType b = 0; b < input_batches; ++b) { // batch
|
||
|
DataType expected_col_major = 0.0f;
|
||
|
DataType expected_row_major = 0.0f;
|
||
|
IndexType row_offset = r + i - row_padding;
|
||
|
IndexType col_offset = c + j - col_padding;
|
||
|
if (row_offset >= 0 && col_offset >= 0 && row_offset < input_rows && col_offset < input_cols) {
|
||
|
expected_col_major = tensor_col_major(d, row_offset, col_offset, b);
|
||
|
expected_row_major = tensor_row_major(b, col_offset, row_offset, d);
|
||
|
}
|
||
|
// ColMajor
|
||
|
if (result_col_major(d, r, c, patchId, b) != expected_col_major) {
|
||
|
std::cout << "Mismatch detected at index i=" << i << " j=" << j << " r=" << r << " c=" << c << " d=" << d << " b=" << b << std::endl;
|
||
|
}
|
||
|
VERIFY_IS_EQUAL(result_col_major(d, r, c, patchId, b), expected_col_major);
|
||
|
// RowMajor
|
||
|
if (result_row_major(b, patchId, c, r, d) != expected_row_major) {
|
||
|
std::cout << "Mismatch detected at index i=" << i << " j=" << j << " r=" << r << " c=" << c << " d=" << d << " b=" << b << std::endl;
|
||
|
}
|
||
|
VERIFY_IS_EQUAL(result_row_major(b, patchId, c, r, d), expected_row_major);
|
||
|
// Check that ColMajor and RowMajor agree.
|
||
|
VERIFY_IS_EQUAL(expected_col_major, expected_row_major);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Verifies SAME padding.
|
||
|
template <typename DataType, typename IndexType>
|
||
|
static void test_patch_padding_same_sycl(const Eigen::SyclDevice& sycl_device){
|
||
|
IndexType input_depth = 3;
|
||
|
IndexType input_rows = 4;
|
||
|
IndexType input_cols = 2;
|
||
|
IndexType input_batches = 1;
|
||
|
IndexType ksize = 2; // Corresponds to the Rows and Cols for tensor.extract_image_patches<>.
|
||
|
IndexType stride = 2; // Only same stride is supported.
|
||
|
|
||
|
// ColMajor
|
||
|
array<IndexType, 4> tensorColMajorRange = {{input_depth, input_rows, input_cols, input_batches}};
|
||
|
array<IndexType, 4> tensorRowMajorRange = {{input_batches, input_cols, input_rows, input_depth}};
|
||
|
Tensor<DataType, 4, DataLayout,IndexType> tensor_col_major(tensorColMajorRange);
|
||
|
Tensor<DataType, 4, RowMajor,IndexType> tensor_row_major(tensorRowMajorRange);
|
||
|
|
||
|
DataType* gpu_data_col_major = static_cast<DataType*>(sycl_device.allocate(tensor_col_major.size()*sizeof(DataType)));
|
||
|
DataType* gpu_data_row_major = static_cast<DataType*>(sycl_device.allocate(tensor_row_major.size()*sizeof(DataType)));
|
||
|
TensorMap<Tensor<DataType, 4, ColMajor, IndexType>> gpu_col_major(gpu_data_col_major, tensorColMajorRange);
|
||
|
TensorMap<Tensor<DataType, 4, RowMajor, IndexType>> gpu_row_major(gpu_data_row_major, tensorRowMajorRange);
|
||
|
|
||
|
sycl_device.memcpyHostToDevice(gpu_data_col_major, tensor_col_major.data(),(tensor_col_major.size())*sizeof(DataType));
|
||
|
gpu_row_major.device(sycl_device)=gpu_col_major.swap_layout();
|
||
|
sycl_device.memcpyDeviceToHost(tensor_row_major.data(), gpu_data_row_major, (tensor_col_major.size())*sizeof(DataType));
|
||
|
|
||
|
VERIFY_IS_EQUAL(tensor_col_major.dimension(0), tensor_row_major.dimension(3));
|
||
|
VERIFY_IS_EQUAL(tensor_col_major.dimension(1), tensor_row_major.dimension(2));
|
||
|
VERIFY_IS_EQUAL(tensor_col_major.dimension(2), tensor_row_major.dimension(1));
|
||
|
VERIFY_IS_EQUAL(tensor_col_major.dimension(3), tensor_row_major.dimension(0));
|
||
|
|
||
|
// Initializes tensor with incrementing numbers.
|
||
|
for (IndexType i = 0; i < tensor_col_major.size(); ++i) {
|
||
|
tensor_col_major.data()[i] = i + 1;
|
||
|
}
|
||
|
|
||
|
array<IndexType, 5> patchColMajorTensorRange={{input_depth, ksize, ksize, 2, input_batches}};
|
||
|
Tensor<DataType, 5, DataLayout,IndexType> result_col_major(patchColMajorTensorRange);
|
||
|
size_t patchTensorBuffSize =result_col_major.size()*sizeof(DataType);
|
||
|
DataType* gpu_data_result_col_major = static_cast<DataType*>(sycl_device.allocate(patchTensorBuffSize));
|
||
|
TensorMap<Tensor<DataType, 5, DataLayout,IndexType>> gpu_result_col_major(gpu_data_result_col_major, patchColMajorTensorRange);
|
||
|
gpu_result_col_major.device(sycl_device)=gpu_col_major.extract_image_patches(ksize, ksize, stride, stride, PADDING_SAME);
|
||
|
sycl_device.memcpyDeviceToHost(result_col_major.data(), gpu_data_result_col_major, patchTensorBuffSize);
|
||
|
|
||
|
|
||
|
VERIFY_IS_EQUAL(result_col_major.dimension(0), input_depth); // depth
|
||
|
VERIFY_IS_EQUAL(result_col_major.dimension(1), ksize); // kernel rows
|
||
|
VERIFY_IS_EQUAL(result_col_major.dimension(2), ksize); // kernel cols
|
||
|
VERIFY_IS_EQUAL(result_col_major.dimension(3), 2); // number of patches
|
||
|
VERIFY_IS_EQUAL(result_col_major.dimension(4), input_batches); // number of batches
|
||
|
|
||
|
// RowMajor
|
||
|
|
||
|
array<IndexType, 5> patchRowMajorTensorRange={{input_batches, 2, ksize, ksize, input_depth }};
|
||
|
Tensor<DataType, 5, RowMajor,IndexType> result_row_major(patchRowMajorTensorRange);
|
||
|
patchTensorBuffSize =result_row_major.size()*sizeof(DataType);
|
||
|
DataType* gpu_data_result_row_major = static_cast<DataType*>(sycl_device.allocate(patchTensorBuffSize));
|
||
|
TensorMap<Tensor<DataType, 5, RowMajor,IndexType>> gpu_result_row_major(gpu_data_result_row_major, patchRowMajorTensorRange);
|
||
|
gpu_result_row_major.device(sycl_device)=gpu_row_major.extract_image_patches(ksize, ksize, stride, stride, PADDING_SAME);
|
||
|
sycl_device.memcpyDeviceToHost(result_row_major.data(), gpu_data_result_row_major, patchTensorBuffSize);
|
||
|
|
||
|
VERIFY_IS_EQUAL(result_col_major.dimension(0), result_row_major.dimension(4));
|
||
|
VERIFY_IS_EQUAL(result_col_major.dimension(1), result_row_major.dimension(3));
|
||
|
VERIFY_IS_EQUAL(result_col_major.dimension(2), result_row_major.dimension(2));
|
||
|
VERIFY_IS_EQUAL(result_col_major.dimension(3), result_row_major.dimension(1));
|
||
|
VERIFY_IS_EQUAL(result_col_major.dimension(4), result_row_major.dimension(0));
|
||
|
|
||
|
// Based on the calculation described in TensorTraits.h, padding happens to be 0.
|
||
|
IndexType row_padding = 0;
|
||
|
IndexType col_padding = 0;
|
||
|
|
||
|
for (IndexType i = 0; (i+stride+ksize-1) <= input_rows; i += stride) { // input rows
|
||
|
for (IndexType j = 0; (j+stride+ksize-1) <= input_cols; j += stride) { // input cols
|
||
|
IndexType patchId = i+input_rows*j;
|
||
|
for (IndexType r = 0; r < ksize; ++r) { // patch rows
|
||
|
for (IndexType c = 0; c < ksize; ++c) { // patch cols
|
||
|
for (IndexType d = 0; d < input_depth; ++d) { // depth
|
||
|
for (IndexType b = 0; b < input_batches; ++b) { // batch
|
||
|
DataType expected_col_major = 0.0f;
|
||
|
DataType expected_row_major = 0.0f;
|
||
|
IndexType row_offset = r*stride + i - row_padding;
|
||
|
IndexType col_offset = c*stride + j - col_padding;
|
||
|
if (row_offset >= 0 && col_offset >= 0 && row_offset < input_rows && col_offset < input_cols) {
|
||
|
expected_col_major = tensor_col_major(d, row_offset, col_offset, b);
|
||
|
expected_row_major = tensor_row_major(b, col_offset, row_offset, d);
|
||
|
}
|
||
|
// ColMajor
|
||
|
if (result_col_major(d, r, c, patchId, b) != expected_col_major) {
|
||
|
std::cout << "Mismatch detected at index i=" << i << " j=" << j << " r=" << r << " c=" << c << " d=" << d << " b=" << b << std::endl;
|
||
|
}
|
||
|
VERIFY_IS_EQUAL(result_col_major(d, r, c, patchId, b), expected_col_major);
|
||
|
// RowMajor
|
||
|
if (result_row_major(b, patchId, c, r, d) != expected_row_major) {
|
||
|
std::cout << "Mismatch detected at index i=" << i << " j=" << j << " r=" << r << " c=" << c << " d=" << d << " b=" << b << std::endl;
|
||
|
}
|
||
|
VERIFY_IS_EQUAL(result_row_major(b, patchId, c, r, d), expected_row_major);
|
||
|
// Check that ColMajor and RowMajor agree.
|
||
|
VERIFY_IS_EQUAL(expected_col_major, expected_row_major);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
template <typename DataType, typename IndexType>
|
||
|
static void test_patch_no_extra_dim_sycl(const Eigen::SyclDevice& sycl_device){
|
||
|
|
||
|
IndexType sizeDim1 = 2;
|
||
|
IndexType sizeDim2 = 3;
|
||
|
IndexType sizeDim3 = 5;
|
||
|
|
||
|
// ColMajor
|
||
|
array<IndexType, 3> tensorColMajorRange = {{sizeDim1, sizeDim2, sizeDim3}};
|
||
|
array<IndexType, 3> tensorRowMajorRange = {{sizeDim3, sizeDim2, sizeDim1}};
|
||
|
Tensor<DataType, 3, DataLayout,IndexType> tensor_col_major(tensorColMajorRange);
|
||
|
tensor_col_major.setRandom();
|
||
|
Tensor<DataType, 3, RowMajor,IndexType> tensor_row_major(tensorRowMajorRange);
|
||
|
|
||
|
DataType* gpu_data_col_major = static_cast<DataType*>(sycl_device.allocate(tensor_col_major.size()*sizeof(DataType)));
|
||
|
DataType* gpu_data_row_major = static_cast<DataType*>(sycl_device.allocate(tensor_row_major.size()*sizeof(DataType)));
|
||
|
TensorMap<Tensor<DataType, 3, ColMajor, IndexType>> gpu_col_major(gpu_data_col_major, tensorColMajorRange);
|
||
|
TensorMap<Tensor<DataType, 3, RowMajor, IndexType>> gpu_row_major(gpu_data_row_major, tensorRowMajorRange);
|
||
|
|
||
|
sycl_device.memcpyHostToDevice(gpu_data_col_major, tensor_col_major.data(),(tensor_col_major.size())*sizeof(DataType));
|
||
|
gpu_row_major.device(sycl_device)=gpu_col_major.swap_layout();
|
||
|
sycl_device.memcpyDeviceToHost(tensor_row_major.data(), gpu_data_row_major, (tensor_row_major.size())*sizeof(DataType));
|
||
|
|
||
|
VERIFY_IS_EQUAL(tensor_col_major.dimension(0), tensor_row_major.dimension(2));
|
||
|
VERIFY_IS_EQUAL(tensor_col_major.dimension(1), tensor_row_major.dimension(1));
|
||
|
VERIFY_IS_EQUAL(tensor_col_major.dimension(2), tensor_row_major.dimension(0));
|
||
|
|
||
|
|
||
|
// Single pixel patch: ColMajor
|
||
|
array<IndexType, 4> patchColMajorTensorRange={{sizeDim1, 1, 1, sizeDim2*sizeDim3}};
|
||
|
Tensor<DataType, 4, DataLayout,IndexType> single_patch_col_major(patchColMajorTensorRange);
|
||
|
size_t patchTensorBuffSize =single_patch_col_major.size()*sizeof(DataType);
|
||
|
DataType* gpu_data_single_patch_col_major = static_cast<DataType*>(sycl_device.allocate(patchTensorBuffSize));
|
||
|
TensorMap<Tensor<DataType, 4, DataLayout,IndexType>> gpu_single_patch_col_major(gpu_data_single_patch_col_major, patchColMajorTensorRange);
|
||
|
gpu_single_patch_col_major.device(sycl_device)=gpu_col_major.extract_image_patches(1, 1);
|
||
|
sycl_device.memcpyDeviceToHost(single_patch_col_major.data(), gpu_data_single_patch_col_major, patchTensorBuffSize);
|
||
|
|
||
|
VERIFY_IS_EQUAL(single_patch_col_major.dimension(0), sizeDim1);
|
||
|
VERIFY_IS_EQUAL(single_patch_col_major.dimension(1), 1);
|
||
|
VERIFY_IS_EQUAL(single_patch_col_major.dimension(2), 1);
|
||
|
VERIFY_IS_EQUAL(single_patch_col_major.dimension(3), sizeDim2*sizeDim3);
|
||
|
|
||
|
// Single pixel patch: RowMajor
|
||
|
array<IndexType, 4> patchRowMajorTensorRange={{sizeDim2*sizeDim3, 1, 1, sizeDim1}};
|
||
|
Tensor<DataType, 4, RowMajor,IndexType> single_patch_row_major(patchRowMajorTensorRange);
|
||
|
patchTensorBuffSize =single_patch_row_major.size()*sizeof(DataType);
|
||
|
DataType* gpu_data_single_patch_row_major = static_cast<DataType*>(sycl_device.allocate(patchTensorBuffSize));
|
||
|
TensorMap<Tensor<DataType, 4, RowMajor,IndexType>> gpu_single_patch_row_major(gpu_data_single_patch_row_major, patchRowMajorTensorRange);
|
||
|
gpu_single_patch_row_major.device(sycl_device)=gpu_row_major.extract_image_patches(1, 1);
|
||
|
sycl_device.memcpyDeviceToHost(single_patch_row_major.data(), gpu_data_single_patch_row_major, patchTensorBuffSize);
|
||
|
|
||
|
VERIFY_IS_EQUAL(single_patch_row_major.dimension(0), sizeDim2*sizeDim3);
|
||
|
VERIFY_IS_EQUAL(single_patch_row_major.dimension(1), 1);
|
||
|
VERIFY_IS_EQUAL(single_patch_row_major.dimension(2), 1);
|
||
|
VERIFY_IS_EQUAL(single_patch_row_major.dimension(3), sizeDim1);
|
||
|
|
||
|
for (IndexType i = 0; i < tensor_col_major.size(); ++i) {
|
||
|
// ColMajor
|
||
|
if (tensor_col_major.data()[i] != single_patch_col_major.data()[i]) {
|
||
|
std::cout << "Mismatch detected at index " << i << " : " << tensor_col_major.data()[i] << " vs " << single_patch_col_major.data()[i] << std::endl;
|
||
|
}
|
||
|
VERIFY_IS_EQUAL(single_patch_col_major.data()[i], tensor_col_major.data()[i]);
|
||
|
// RowMajor
|
||
|
if (tensor_row_major.data()[i] != single_patch_row_major.data()[i]) {
|
||
|
std::cout << "Mismatch detected at index " << i << " : "
|
||
|
<< tensor_col_major.data()[i] << " vs "
|
||
|
<< single_patch_row_major.data()[i] << std::endl;
|
||
|
}
|
||
|
VERIFY_IS_EQUAL(single_patch_row_major.data()[i],
|
||
|
tensor_row_major.data()[i]);
|
||
|
VERIFY_IS_EQUAL(tensor_col_major.data()[i], tensor_row_major.data()[i]);
|
||
|
VERIFY_IS_EQUAL(single_patch_col_major.data()[i],
|
||
|
single_patch_row_major.data()[i]);
|
||
|
}
|
||
|
|
||
|
// Entire image patch: ColMajor
|
||
|
patchColMajorTensorRange={{sizeDim1, sizeDim2, sizeDim3, sizeDim2*sizeDim3}};
|
||
|
Tensor<DataType, 4, DataLayout,IndexType> entire_image_patch_col_major(patchColMajorTensorRange);
|
||
|
patchTensorBuffSize =entire_image_patch_col_major.size()*sizeof(DataType);
|
||
|
DataType* gpu_data_entire_image_patch_col_major = static_cast<DataType*>(sycl_device.allocate(patchTensorBuffSize));
|
||
|
TensorMap<Tensor<DataType, 4, DataLayout,IndexType>> gpu_entire_image_patch_col_major(gpu_data_entire_image_patch_col_major, patchColMajorTensorRange);
|
||
|
gpu_entire_image_patch_col_major.device(sycl_device)=gpu_col_major.extract_image_patches(3, 5);
|
||
|
sycl_device.memcpyDeviceToHost(entire_image_patch_col_major.data(), gpu_data_entire_image_patch_col_major, patchTensorBuffSize);
|
||
|
|
||
|
VERIFY_IS_EQUAL(entire_image_patch_col_major.dimension(0), 2);
|
||
|
VERIFY_IS_EQUAL(entire_image_patch_col_major.dimension(1), 3);
|
||
|
VERIFY_IS_EQUAL(entire_image_patch_col_major.dimension(2), 5);
|
||
|
VERIFY_IS_EQUAL(entire_image_patch_col_major.dimension(3), 3*5);
|
||
|
|
||
|
// Entire image patch: RowMajor
|
||
|
patchRowMajorTensorRange={{sizeDim2*sizeDim3, sizeDim3, sizeDim2, sizeDim1}};
|
||
|
Tensor<DataType, 4, RowMajor,IndexType> entire_image_patch_row_major(patchRowMajorTensorRange);
|
||
|
patchTensorBuffSize =entire_image_patch_row_major.size()*sizeof(DataType);
|
||
|
DataType* gpu_data_entire_image_patch_row_major = static_cast<DataType*>(sycl_device.allocate(patchTensorBuffSize));
|
||
|
TensorMap<Tensor<DataType, 4, RowMajor,IndexType>> gpu_entire_image_patch_row_major(gpu_data_entire_image_patch_row_major, patchRowMajorTensorRange);
|
||
|
gpu_entire_image_patch_row_major.device(sycl_device)=gpu_row_major.extract_image_patches(3, 5);
|
||
|
sycl_device.memcpyDeviceToHost(entire_image_patch_row_major.data(), gpu_data_entire_image_patch_row_major, patchTensorBuffSize);
|
||
|
VERIFY_IS_EQUAL(entire_image_patch_row_major.dimension(0), 3*5);
|
||
|
VERIFY_IS_EQUAL(entire_image_patch_row_major.dimension(1), 5);
|
||
|
VERIFY_IS_EQUAL(entire_image_patch_row_major.dimension(2), 3);
|
||
|
VERIFY_IS_EQUAL(entire_image_patch_row_major.dimension(3), 2);
|
||
|
|
||
|
for (IndexType i = 0; i < 3; ++i) {
|
||
|
for (IndexType j = 0; j < 5; ++j) {
|
||
|
IndexType patchId = i+3*j;
|
||
|
for (IndexType r = 0; r < 3; ++r) {
|
||
|
for (IndexType c = 0; c < 5; ++c) {
|
||
|
for (IndexType d = 0; d < 2; ++d) {
|
||
|
DataType expected_col_major = 0.0f;
|
||
|
DataType expected_row_major = 0.0f;
|
||
|
if (r-1+i >= 0 && c-2+j >= 0 && r-1+i < 3 && c-2+j < 5) {
|
||
|
expected_col_major = tensor_col_major(d, r-1+i, c-2+j);
|
||
|
expected_row_major = tensor_row_major(c-2+j, r-1+i, d);
|
||
|
}
|
||
|
// ColMajor
|
||
|
if (entire_image_patch_col_major(d, r, c, patchId) != expected_col_major) {
|
||
|
std::cout << "Mismatch detected at index i=" << i << " j=" << j << " r=" << r << " c=" << c << " d=" << d << std::endl;
|
||
|
}
|
||
|
VERIFY_IS_EQUAL(entire_image_patch_col_major(d, r, c, patchId), expected_col_major);
|
||
|
// RowMajor
|
||
|
if (entire_image_patch_row_major(patchId, c, r, d) !=
|
||
|
expected_row_major) {
|
||
|
std::cout << "Mismatch detected at index i=" << i << " j=" << j << " r=" << r << " c=" << c << " d=" << d << std::endl;
|
||
|
}
|
||
|
VERIFY_IS_EQUAL(entire_image_patch_row_major(patchId, c, r, d),
|
||
|
expected_row_major);
|
||
|
// Check that ColMajor and RowMajor agree.
|
||
|
VERIFY_IS_EQUAL(expected_col_major, expected_row_major);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// 2D patch: ColMajor
|
||
|
patchColMajorTensorRange={{sizeDim1, 2, 2, sizeDim2*sizeDim3}};
|
||
|
Tensor<DataType, 4, DataLayout,IndexType> twod_patch_col_major(patchColMajorTensorRange);
|
||
|
patchTensorBuffSize =twod_patch_col_major.size()*sizeof(DataType);
|
||
|
DataType* gpu_data_twod_patch_col_major = static_cast<DataType*>(sycl_device.allocate(patchTensorBuffSize));
|
||
|
TensorMap<Tensor<DataType, 4, DataLayout,IndexType>> gpu_twod_patch_col_major(gpu_data_twod_patch_col_major, patchColMajorTensorRange);
|
||
|
gpu_twod_patch_col_major.device(sycl_device)=gpu_col_major.extract_image_patches(2, 2);
|
||
|
sycl_device.memcpyDeviceToHost(twod_patch_col_major.data(), gpu_data_twod_patch_col_major, patchTensorBuffSize);
|
||
|
|
||
|
VERIFY_IS_EQUAL(twod_patch_col_major.dimension(0), 2);
|
||
|
VERIFY_IS_EQUAL(twod_patch_col_major.dimension(1), 2);
|
||
|
VERIFY_IS_EQUAL(twod_patch_col_major.dimension(2), 2);
|
||
|
VERIFY_IS_EQUAL(twod_patch_col_major.dimension(3), 3*5);
|
||
|
|
||
|
// 2D patch: RowMajor
|
||
|
patchRowMajorTensorRange={{sizeDim2*sizeDim3, 2, 2, sizeDim1}};
|
||
|
Tensor<DataType, 4, RowMajor,IndexType> twod_patch_row_major(patchRowMajorTensorRange);
|
||
|
patchTensorBuffSize =twod_patch_row_major.size()*sizeof(DataType);
|
||
|
DataType* gpu_data_twod_patch_row_major = static_cast<DataType*>(sycl_device.allocate(patchTensorBuffSize));
|
||
|
TensorMap<Tensor<DataType, 4, RowMajor,IndexType>> gpu_twod_patch_row_major(gpu_data_twod_patch_row_major, patchRowMajorTensorRange);
|
||
|
gpu_twod_patch_row_major.device(sycl_device)=gpu_row_major.extract_image_patches(2, 2);
|
||
|
sycl_device.memcpyDeviceToHost(twod_patch_row_major.data(), gpu_data_twod_patch_row_major, patchTensorBuffSize);
|
||
|
VERIFY_IS_EQUAL(twod_patch_row_major.dimension(0), 3*5);
|
||
|
VERIFY_IS_EQUAL(twod_patch_row_major.dimension(1), 2);
|
||
|
VERIFY_IS_EQUAL(twod_patch_row_major.dimension(2), 2);
|
||
|
VERIFY_IS_EQUAL(twod_patch_row_major.dimension(3), 2);
|
||
|
|
||
|
// Based on the calculation described in TensorTraits.h, padding happens to be 0.
|
||
|
IndexType row_padding = 0;
|
||
|
IndexType col_padding = 0;
|
||
|
IndexType stride = 1;
|
||
|
|
||
|
for (IndexType i = 0; i < 3; ++i) {
|
||
|
for (IndexType j = 0; j < 5; ++j) {
|
||
|
IndexType patchId = i+3*j;
|
||
|
for (IndexType r = 0; r < 2; ++r) {
|
||
|
for (IndexType c = 0; c < 2; ++c) {
|
||
|
for (IndexType d = 0; d < 2; ++d) {
|
||
|
DataType expected_col_major = 0.0f;
|
||
|
DataType expected_row_major = 0.0f;
|
||
|
IndexType row_offset = r*stride + i - row_padding;
|
||
|
IndexType col_offset = c*stride + j - col_padding;
|
||
|
// ColMajor
|
||
|
if (row_offset >= 0 && col_offset >= 0 && row_offset < tensor_col_major.dimension(1) && col_offset < tensor_col_major.dimension(2)) {
|
||
|
expected_col_major = tensor_col_major(d, row_offset, col_offset);
|
||
|
}
|
||
|
if (twod_patch_col_major(d, r, c, patchId) != expected_col_major) {
|
||
|
std::cout << "Mismatch detected at index i=" << i << " j=" << j << " r=" << r << " c=" << c << " d=" << d << std::endl;
|
||
|
}
|
||
|
VERIFY_IS_EQUAL(twod_patch_col_major(d, r, c, patchId), expected_col_major);
|
||
|
// RowMajor
|
||
|
if (row_offset >= 0 && col_offset >= 0 && row_offset < tensor_row_major.dimension(1) && col_offset < tensor_row_major.dimension(0)) {
|
||
|
expected_row_major = tensor_row_major(col_offset, row_offset, d);
|
||
|
}
|
||
|
if (twod_patch_row_major(patchId, c, r, d) != expected_row_major) {
|
||
|
std::cout << "Mismatch detected at index i=" << i << " j=" << j << " r=" << r << " c=" << c << " d=" << d << std::endl;
|
||
|
}
|
||
|
VERIFY_IS_EQUAL(twod_patch_row_major(patchId, c, r, d), expected_row_major);
|
||
|
// Check that ColMajor and RowMajor agree.
|
||
|
VERIFY_IS_EQUAL(expected_col_major, expected_row_major);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
sycl_device.deallocate(gpu_data_col_major);
|
||
|
sycl_device.deallocate(gpu_data_row_major);
|
||
|
sycl_device.deallocate(gpu_data_single_patch_col_major);
|
||
|
sycl_device.deallocate(gpu_data_single_patch_row_major);
|
||
|
sycl_device.deallocate(gpu_data_entire_image_patch_col_major);
|
||
|
sycl_device.deallocate(gpu_data_entire_image_patch_row_major);
|
||
|
sycl_device.deallocate(gpu_data_twod_patch_col_major);
|
||
|
sycl_device.deallocate(gpu_data_twod_patch_row_major);
|
||
|
}
|
||
|
|
||
|
template <typename DataType, typename IndexType>
|
||
|
static void test_imagenet_patches_sycl(const Eigen::SyclDevice& sycl_device)
|
||
|
{
|
||
|
// Test the code on typical configurations used by the 'imagenet' benchmarks at
|
||
|
// https://github.com/soumith/convnet-benchmarks
|
||
|
// ColMajor
|
||
|
IndexType sizeDim1 = 3;
|
||
|
IndexType sizeDim2 = 128;
|
||
|
IndexType sizeDim3 = 128;
|
||
|
IndexType sizeDim4 = 16;
|
||
|
array<IndexType, 4> tensorColMajorRange = {{sizeDim1, sizeDim2, sizeDim3, sizeDim4}};
|
||
|
Tensor<DataType, 4, DataLayout,IndexType> l_in_col_major(tensorColMajorRange);
|
||
|
l_in_col_major.setRandom();
|
||
|
|
||
|
DataType* gpu_data_l_in_col_major = static_cast<DataType*>(sycl_device.allocate(l_in_col_major.size()*sizeof(DataType)));
|
||
|
TensorMap<Tensor<DataType, 4, ColMajor, IndexType>> gpu_l_in_col_major(gpu_data_l_in_col_major, tensorColMajorRange);
|
||
|
|
||
|
sycl_device.memcpyHostToDevice(gpu_data_l_in_col_major, l_in_col_major.data(),(l_in_col_major.size())*sizeof(DataType));
|
||
|
|
||
|
array<IndexType, 5> patchTensorRange={{sizeDim1, 11, 11, sizeDim2*sizeDim3, sizeDim4}};
|
||
|
Tensor<DataType, 5, DataLayout,IndexType> l_out_col_major(patchTensorRange);
|
||
|
size_t patchTensorBuffSize =l_out_col_major.size()*sizeof(DataType);
|
||
|
DataType* gpu_data_l_out_col_major = static_cast<DataType*>(sycl_device.allocate(patchTensorBuffSize));
|
||
|
TensorMap<Tensor<DataType, 5, DataLayout,IndexType>> gpu_l_out_col_major(gpu_data_l_out_col_major, patchTensorRange);
|
||
|
gpu_l_out_col_major.device(sycl_device)=gpu_l_in_col_major.extract_image_patches(11, 11);
|
||
|
sycl_device.memcpyDeviceToHost(l_out_col_major.data(), gpu_data_l_out_col_major, patchTensorBuffSize);
|
||
|
|
||
|
VERIFY_IS_EQUAL(l_out_col_major.dimension(0), sizeDim1);
|
||
|
VERIFY_IS_EQUAL(l_out_col_major.dimension(1), 11);
|
||
|
VERIFY_IS_EQUAL(l_out_col_major.dimension(2), 11);
|
||
|
VERIFY_IS_EQUAL(l_out_col_major.dimension(3), sizeDim2*sizeDim3);
|
||
|
VERIFY_IS_EQUAL(l_out_col_major.dimension(4), sizeDim4);
|
||
|
|
||
|
// RowMajor
|
||
|
patchTensorRange={{sizeDim4, sizeDim2*sizeDim3, 11, 11, sizeDim1}};
|
||
|
Tensor<DataType, 5, RowMajor,IndexType> l_out_row_major(patchTensorRange);
|
||
|
patchTensorBuffSize =l_out_row_major.size()*sizeof(DataType);
|
||
|
DataType* gpu_data_l_out_row_major = static_cast<DataType*>(sycl_device.allocate(patchTensorBuffSize));
|
||
|
TensorMap<Tensor<DataType, 5, RowMajor,IndexType>> gpu_l_out_row_major(gpu_data_l_out_row_major, patchTensorRange);
|
||
|
gpu_l_out_row_major.device(sycl_device)=gpu_l_in_col_major.swap_layout().extract_image_patches(11, 11);
|
||
|
sycl_device.memcpyDeviceToHost(l_out_row_major.data(), gpu_data_l_out_row_major, patchTensorBuffSize);
|
||
|
|
||
|
VERIFY_IS_EQUAL(l_out_row_major.dimension(0), sizeDim4);
|
||
|
VERIFY_IS_EQUAL(l_out_row_major.dimension(1), sizeDim2*sizeDim3);
|
||
|
VERIFY_IS_EQUAL(l_out_row_major.dimension(2), 11);
|
||
|
VERIFY_IS_EQUAL(l_out_row_major.dimension(3), 11);
|
||
|
VERIFY_IS_EQUAL(l_out_row_major.dimension(4), sizeDim1);
|
||
|
|
||
|
for (IndexType b = 0; b < 16; ++b) {
|
||
|
for (IndexType i = 0; i < 128; ++i) {
|
||
|
for (IndexType j = 0; j < 128; ++j) {
|
||
|
IndexType patchId = i+128*j;
|
||
|
for (IndexType c = 0; c < 11; ++c) {
|
||
|
for (IndexType r = 0; r < 11; ++r) {
|
||
|
for (IndexType d = 0; d < 3; ++d) {
|
||
|
DataType expected = 0.0f;
|
||
|
if (r-5+i >= 0 && c-5+j >= 0 && r-5+i < 128 && c-5+j < 128) {
|
||
|
expected = l_in_col_major(d, r-5+i, c-5+j, b);
|
||
|
}
|
||
|
// ColMajor
|
||
|
if (l_out_col_major(d, r, c, patchId, b) != expected) {
|
||
|
std::cout << "Mismatch detected at index i=" << i << " j=" << j << " r=" << r << " c=" << c << " d=" << d << " b=" << b << std::endl;
|
||
|
}
|
||
|
VERIFY_IS_EQUAL(l_out_col_major(d, r, c, patchId, b), expected);
|
||
|
// RowMajor
|
||
|
if (l_out_row_major(b, patchId, c, r, d) !=
|
||
|
expected) {
|
||
|
std::cout << "Mismatch detected at index i=" << i << " j=" << j
|
||
|
<< " r=" << r << " c=" << c << " d=" << d << " b=" << b
|
||
|
<< std::endl;
|
||
|
}
|
||
|
VERIFY_IS_EQUAL(l_out_row_major(b, patchId, c, r, d),
|
||
|
expected);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// ColMajor
|
||
|
sycl_device.deallocate(gpu_data_l_in_col_major);
|
||
|
sycl_device.deallocate(gpu_data_l_out_col_major);
|
||
|
sizeDim1 = 16;
|
||
|
sizeDim2 = 64;
|
||
|
sizeDim3 = 64;
|
||
|
sizeDim4 = 32;
|
||
|
tensorColMajorRange = {{sizeDim1, sizeDim2, sizeDim3, sizeDim4}};
|
||
|
l_in_col_major.resize(tensorColMajorRange);
|
||
|
l_in_col_major.setRandom();
|
||
|
gpu_data_l_in_col_major = static_cast<DataType*>(sycl_device.allocate(l_in_col_major.size()*sizeof(DataType)));
|
||
|
TensorMap<Tensor<DataType, 4, ColMajor, IndexType>>gpu_l_in_col_major_resize1(gpu_data_l_in_col_major, tensorColMajorRange);
|
||
|
|
||
|
patchTensorRange={{sizeDim1, 9, 9, sizeDim2*sizeDim3, sizeDim4}};
|
||
|
l_out_col_major.resize(patchTensorRange);
|
||
|
patchTensorBuffSize =l_out_col_major.size()*sizeof(DataType);
|
||
|
gpu_data_l_out_col_major = static_cast<DataType*>(sycl_device.allocate(patchTensorBuffSize));
|
||
|
TensorMap<Tensor<DataType, 5, DataLayout,IndexType>>gpu_l_out_col_major_resize1(gpu_data_l_out_col_major, patchTensorRange);
|
||
|
sycl_device.memcpyHostToDevice(gpu_data_l_in_col_major, l_in_col_major.data(),(l_in_col_major.size())*sizeof(DataType));
|
||
|
gpu_l_out_col_major_resize1.device(sycl_device)=gpu_l_in_col_major_resize1.extract_image_patches(9, 9);
|
||
|
sycl_device.memcpyDeviceToHost(l_out_col_major.data(), gpu_data_l_out_col_major, patchTensorBuffSize);
|
||
|
VERIFY_IS_EQUAL(l_out_col_major.dimension(0), 16);
|
||
|
VERIFY_IS_EQUAL(l_out_col_major.dimension(1), 9);
|
||
|
VERIFY_IS_EQUAL(l_out_col_major.dimension(2), 9);
|
||
|
VERIFY_IS_EQUAL(l_out_col_major.dimension(3), 64*64);
|
||
|
VERIFY_IS_EQUAL(l_out_col_major.dimension(4), 32);
|
||
|
|
||
|
// RowMajor
|
||
|
sycl_device.deallocate(gpu_data_l_out_row_major);
|
||
|
patchTensorRange={{sizeDim4, sizeDim2*sizeDim3, 9, 9 ,sizeDim1}};
|
||
|
l_out_row_major.resize(patchTensorRange);
|
||
|
patchTensorBuffSize =l_out_row_major.size()*sizeof(DataType);
|
||
|
gpu_data_l_out_row_major = static_cast<DataType*>(sycl_device.allocate(patchTensorBuffSize));
|
||
|
TensorMap<Tensor<DataType, 5, RowMajor,IndexType>>gpu_l_out_row_major_resize1(gpu_data_l_out_row_major, patchTensorRange);
|
||
|
gpu_l_out_row_major_resize1.device(sycl_device)=gpu_l_in_col_major_resize1.swap_layout().extract_image_patches(9, 9);
|
||
|
sycl_device.memcpyDeviceToHost(l_out_row_major.data(), gpu_data_l_out_row_major, patchTensorBuffSize);
|
||
|
|
||
|
VERIFY_IS_EQUAL(l_out_row_major.dimension(0), 32);
|
||
|
VERIFY_IS_EQUAL(l_out_row_major.dimension(1), 64*64);
|
||
|
VERIFY_IS_EQUAL(l_out_row_major.dimension(2), 9);
|
||
|
VERIFY_IS_EQUAL(l_out_row_major.dimension(3), 9);
|
||
|
VERIFY_IS_EQUAL(l_out_row_major.dimension(4), 16);
|
||
|
|
||
|
for (IndexType b = 0; b < 32; ++b) {
|
||
|
for (IndexType i = 0; i < 64; ++i) {
|
||
|
for (IndexType j = 0; j < 64; ++j) {
|
||
|
IndexType patchId = i+64*j;
|
||
|
for (IndexType c = 0; c < 9; ++c) {
|
||
|
for (IndexType r = 0; r < 9; ++r) {
|
||
|
for (IndexType d = 0; d < 16; ++d) {
|
||
|
DataType expected = 0.0f;
|
||
|
if (r-4+i >= 0 && c-4+j >= 0 && r-4+i < 64 && c-4+j < 64) {
|
||
|
expected = l_in_col_major(d, r-4+i, c-4+j, b);
|
||
|
}
|
||
|
// ColMajor
|
||
|
if (l_out_col_major(d, r, c, patchId, b) != expected) {
|
||
|
std::cout << "Mismatch detected at index i=" << i << " j=" << j << " r=" << r << " c=" << c << " d=" << d << " b=" << b << std::endl;
|
||
|
}
|
||
|
VERIFY_IS_EQUAL(l_out_col_major(d, r, c, patchId, b), expected);
|
||
|
// RowMajor
|
||
|
if (l_out_row_major(b, patchId, c, r, d) != expected) {
|
||
|
std::cout << "Mismatch detected at index i=" << i << " j=" << j << " r=" << r << " c=" << c << " d=" << d << " b=" << b << std::endl;
|
||
|
}
|
||
|
VERIFY_IS_EQUAL(l_out_row_major(b, patchId, c, r, d), expected);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// ColMajor
|
||
|
|
||
|
sycl_device.deallocate(gpu_data_l_in_col_major);
|
||
|
sycl_device.deallocate(gpu_data_l_out_col_major);
|
||
|
sizeDim1 = 32;
|
||
|
sizeDim2 = 16;
|
||
|
sizeDim3 = 16;
|
||
|
sizeDim4 = 32;
|
||
|
tensorColMajorRange = {{sizeDim1, sizeDim2, sizeDim3, sizeDim4}};
|
||
|
l_in_col_major.resize(tensorColMajorRange);
|
||
|
l_in_col_major.setRandom();
|
||
|
gpu_data_l_in_col_major = static_cast<DataType*>(sycl_device.allocate(l_in_col_major.size()*sizeof(DataType)));
|
||
|
TensorMap<Tensor<DataType, 4, ColMajor, IndexType>>gpu_l_in_col_major_resize2(gpu_data_l_in_col_major, tensorColMajorRange);
|
||
|
|
||
|
patchTensorRange={{sizeDim1, 7, 7, sizeDim2*sizeDim3, sizeDim4}};
|
||
|
l_out_col_major.resize(patchTensorRange);
|
||
|
patchTensorBuffSize =l_out_col_major.size()*sizeof(DataType);
|
||
|
gpu_data_l_out_col_major = static_cast<DataType*>(sycl_device.allocate(patchTensorBuffSize));
|
||
|
TensorMap<Tensor<DataType, 5, DataLayout,IndexType>>gpu_l_out_col_major_resize2(gpu_data_l_out_col_major, patchTensorRange);
|
||
|
sycl_device.memcpyHostToDevice(gpu_data_l_in_col_major, l_in_col_major.data(),(l_in_col_major.size())*sizeof(DataType));
|
||
|
gpu_l_out_col_major_resize2.device(sycl_device)=gpu_l_in_col_major_resize2.extract_image_patches(7, 7);
|
||
|
sycl_device.memcpyDeviceToHost(l_out_col_major.data(), gpu_data_l_out_col_major, patchTensorBuffSize);
|
||
|
|
||
|
VERIFY_IS_EQUAL(l_out_col_major.dimension(0), 32);
|
||
|
VERIFY_IS_EQUAL(l_out_col_major.dimension(1), 7);
|
||
|
VERIFY_IS_EQUAL(l_out_col_major.dimension(2), 7);
|
||
|
VERIFY_IS_EQUAL(l_out_col_major.dimension(3), 16*16);
|
||
|
VERIFY_IS_EQUAL(l_out_col_major.dimension(4), 32);
|
||
|
|
||
|
// RowMajor
|
||
|
sycl_device.deallocate(gpu_data_l_out_row_major);
|
||
|
patchTensorRange={{sizeDim4, sizeDim2*sizeDim3, 7, 7 ,sizeDim1}};
|
||
|
l_out_row_major.resize(patchTensorRange);
|
||
|
patchTensorBuffSize =l_out_row_major.size()*sizeof(DataType);
|
||
|
gpu_data_l_out_row_major = static_cast<DataType*>(sycl_device.allocate(patchTensorBuffSize));
|
||
|
TensorMap<Tensor<DataType, 5, RowMajor,IndexType>>gpu_l_out_row_major_resize2(gpu_data_l_out_row_major, patchTensorRange);
|
||
|
gpu_l_out_row_major_resize2.device(sycl_device)=gpu_l_in_col_major_resize2.swap_layout().extract_image_patches(7, 7);
|
||
|
sycl_device.memcpyDeviceToHost(l_out_row_major.data(), gpu_data_l_out_row_major, patchTensorBuffSize);
|
||
|
|
||
|
VERIFY_IS_EQUAL(l_out_row_major.dimension(0), 32);
|
||
|
VERIFY_IS_EQUAL(l_out_row_major.dimension(1), 16*16);
|
||
|
VERIFY_IS_EQUAL(l_out_row_major.dimension(2), 7);
|
||
|
VERIFY_IS_EQUAL(l_out_row_major.dimension(3), 7);
|
||
|
VERIFY_IS_EQUAL(l_out_row_major.dimension(4), 32);
|
||
|
|
||
|
for (IndexType b = 0; b < 32; ++b) {
|
||
|
for (IndexType i = 0; i < 16; ++i) {
|
||
|
for (IndexType j = 0; j < 16; ++j) {
|
||
|
IndexType patchId = i+16*j;
|
||
|
for (IndexType c = 0; c < 7; ++c) {
|
||
|
for (IndexType r = 0; r < 7; ++r) {
|
||
|
for (IndexType d = 0; d < 32; ++d) {
|
||
|
DataType expected = 0.0f;
|
||
|
if (r-3+i >= 0 && c-3+j >= 0 && r-3+i < 16 && c-3+j < 16) {
|
||
|
expected = l_in_col_major(d, r-3+i, c-3+j, b);
|
||
|
}
|
||
|
// ColMajor
|
||
|
if (l_out_col_major(d, r, c, patchId, b) != expected) {
|
||
|
std::cout << "Mismatch detected at index i=" << i << " j=" << j << " r=" << r << " c=" << c << " d=" << d << " b=" << b << std::endl;
|
||
|
}
|
||
|
VERIFY_IS_EQUAL(l_out_col_major(d, r, c, patchId, b), expected);
|
||
|
// RowMajor
|
||
|
if (l_out_row_major(b, patchId, c, r, d) != expected) {
|
||
|
std::cout << "Mismatch detected at index i=" << i << " j=" << j << " r=" << r << " c=" << c << " d=" << d << " b=" << b << std::endl;
|
||
|
}
|
||
|
VERIFY_IS_EQUAL(l_out_row_major(b, patchId, c, r, d), expected);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// ColMajor
|
||
|
sycl_device.deallocate(gpu_data_l_in_col_major);
|
||
|
sycl_device.deallocate(gpu_data_l_out_col_major);
|
||
|
sizeDim1 = 64;
|
||
|
sizeDim2 = 13;
|
||
|
sizeDim3 = 13;
|
||
|
sizeDim4 = 32;
|
||
|
tensorColMajorRange = {{sizeDim1, sizeDim2, sizeDim3, sizeDim4}};
|
||
|
l_in_col_major.resize(tensorColMajorRange);
|
||
|
l_in_col_major.setRandom();
|
||
|
gpu_data_l_in_col_major = static_cast<DataType*>(sycl_device.allocate(l_in_col_major.size()*sizeof(DataType)));
|
||
|
TensorMap<Tensor<DataType, 4, ColMajor, IndexType>>gpu_l_in_col_major_resize3(gpu_data_l_in_col_major, tensorColMajorRange);
|
||
|
|
||
|
patchTensorRange={{sizeDim1, 3, 3, sizeDim2*sizeDim3, sizeDim4}};
|
||
|
l_out_col_major.resize(patchTensorRange);
|
||
|
patchTensorBuffSize =l_out_col_major.size()*sizeof(DataType);
|
||
|
gpu_data_l_out_col_major = static_cast<DataType*>(sycl_device.allocate(patchTensorBuffSize));
|
||
|
TensorMap<Tensor<DataType, 5, DataLayout,IndexType>>gpu_l_out_col_major_resize3(gpu_data_l_out_col_major, patchTensorRange);
|
||
|
sycl_device.memcpyHostToDevice(gpu_data_l_in_col_major, l_in_col_major.data(),(l_in_col_major.size())*sizeof(DataType));
|
||
|
gpu_l_out_col_major_resize3.device(sycl_device)=gpu_l_in_col_major_resize3.extract_image_patches(3, 3);
|
||
|
sycl_device.memcpyDeviceToHost(l_out_col_major.data(), gpu_data_l_out_col_major, patchTensorBuffSize);
|
||
|
|
||
|
VERIFY_IS_EQUAL(l_out_col_major.dimension(0), 64);
|
||
|
VERIFY_IS_EQUAL(l_out_col_major.dimension(1), 3);
|
||
|
VERIFY_IS_EQUAL(l_out_col_major.dimension(2), 3);
|
||
|
VERIFY_IS_EQUAL(l_out_col_major.dimension(3), 13*13);
|
||
|
VERIFY_IS_EQUAL(l_out_col_major.dimension(4), 32);
|
||
|
|
||
|
// RowMajor
|
||
|
sycl_device.deallocate(gpu_data_l_out_row_major);
|
||
|
patchTensorRange={{sizeDim4, sizeDim2*sizeDim3, 3, 3 ,sizeDim1}};
|
||
|
l_out_row_major.resize(patchTensorRange);
|
||
|
patchTensorBuffSize =l_out_row_major.size()*sizeof(DataType);
|
||
|
gpu_data_l_out_row_major = static_cast<DataType*>(sycl_device.allocate(patchTensorBuffSize));
|
||
|
TensorMap<Tensor<DataType, 5, RowMajor,IndexType>>gpu_l_out_row_major_resize3(gpu_data_l_out_row_major, patchTensorRange);
|
||
|
gpu_l_out_row_major_resize3.device(sycl_device)=gpu_l_in_col_major_resize3.swap_layout().extract_image_patches(3, 3);
|
||
|
sycl_device.memcpyDeviceToHost(l_out_row_major.data(), gpu_data_l_out_row_major, patchTensorBuffSize);
|
||
|
|
||
|
VERIFY_IS_EQUAL(l_out_row_major.dimension(0), 32);
|
||
|
VERIFY_IS_EQUAL(l_out_row_major.dimension(1), 13*13);
|
||
|
VERIFY_IS_EQUAL(l_out_row_major.dimension(2), 3);
|
||
|
VERIFY_IS_EQUAL(l_out_row_major.dimension(3), 3);
|
||
|
VERIFY_IS_EQUAL(l_out_row_major.dimension(4), 64);
|
||
|
|
||
|
for (IndexType b = 0; b < 32; ++b) {
|
||
|
for (IndexType i = 0; i < 13; ++i) {
|
||
|
for (IndexType j = 0; j < 13; ++j) {
|
||
|
IndexType patchId = i+13*j;
|
||
|
for (IndexType c = 0; c < 3; ++c) {
|
||
|
for (IndexType r = 0; r < 3; ++r) {
|
||
|
for (IndexType d = 0; d < 64; ++d) {
|
||
|
DataType expected = 0.0f;
|
||
|
if (r-1+i >= 0 && c-1+j >= 0 && r-1+i < 13 && c-1+j < 13) {
|
||
|
expected = l_in_col_major(d, r-1+i, c-1+j, b);
|
||
|
}
|
||
|
// ColMajor
|
||
|
if (l_out_col_major(d, r, c, patchId, b) != expected) {
|
||
|
std::cout << "Mismatch detected at index i=" << i << " j=" << j << " r=" << r << " c=" << c << " d=" << d << " b=" << b << std::endl;
|
||
|
}
|
||
|
VERIFY_IS_EQUAL(l_out_col_major(d, r, c, patchId, b), expected);
|
||
|
// RowMajor
|
||
|
if (l_out_row_major(b, patchId, c, r, d) != expected) {
|
||
|
std::cout << "Mismatch detected at index i=" << i << " j=" << j << " r=" << r << " c=" << c << " d=" << d << " b=" << b << std::endl;
|
||
|
}
|
||
|
VERIFY_IS_EQUAL(l_out_row_major(b, patchId, c, r, d), expected);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
sycl_device.deallocate(gpu_data_l_in_col_major);
|
||
|
sycl_device.deallocate(gpu_data_l_out_col_major);
|
||
|
sycl_device.deallocate(gpu_data_l_out_row_major);
|
||
|
}
|
||
|
|
||
|
|
||
|
template<typename DataType, typename dev_Selector> void sycl_tensor_image_patch_test_per_device(dev_Selector s){
|
||
|
QueueInterface queueInterface(s);
|
||
|
auto sycl_device = Eigen::SyclDevice(&queueInterface);
|
||
|
test_simple_image_patch_sycl<DataType, int64_t>(sycl_device);
|
||
|
test_patch_padding_valid_sycl<DataType, int64_t>(sycl_device);
|
||
|
test_patch_padding_valid_same_value_sycl<DataType, int64_t>(sycl_device);
|
||
|
test_patch_padding_same_sycl<DataType, int64_t>(sycl_device);
|
||
|
test_patch_no_extra_dim_sycl<DataType, int64_t>(sycl_device);
|
||
|
test_imagenet_patches_sycl<DataType, int64_t>(sycl_device);
|
||
|
}
|
||
|
EIGEN_DECLARE_TEST(cxx11_tensor_image_patch_sycl)
|
||
|
{
|
||
|
for (const auto& device :Eigen::get_sycl_supported_devices()) {
|
||
|
CALL_SUBTEST(sycl_tensor_image_patch_test_per_device<float>(device));
|
||
|
}
|
||
|
}
|