You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
194 lines
6.2 KiB
194 lines
6.2 KiB
2 years ago
|
// This file is part of Eigen, a lightweight C++ template library
|
||
|
// for linear algebra.
|
||
|
//
|
||
|
// Copyright (C) 2008 Benoit Jacob <jacob.benoit.1@gmail.com>
|
||
|
//
|
||
|
// This Source Code Form is subject to the terms of the Mozilla
|
||
|
// Public License v. 2.0. If a copy of the MPL was not distributed
|
||
|
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
||
|
|
||
|
#include "main.h"
|
||
|
|
||
|
template<typename MatrixType> void matrixVisitor(const MatrixType& p)
|
||
|
{
|
||
|
typedef typename MatrixType::Scalar Scalar;
|
||
|
|
||
|
Index rows = p.rows();
|
||
|
Index cols = p.cols();
|
||
|
|
||
|
// construct a random matrix where all coefficients are different
|
||
|
MatrixType m;
|
||
|
m = MatrixType::Random(rows, cols);
|
||
|
for(Index i = 0; i < m.size(); i++)
|
||
|
for(Index i2 = 0; i2 < i; i2++)
|
||
|
while(m(i) == m(i2)) // yes, ==
|
||
|
m(i) = internal::random<Scalar>();
|
||
|
|
||
|
Scalar minc = Scalar(1000), maxc = Scalar(-1000);
|
||
|
Index minrow=0,mincol=0,maxrow=0,maxcol=0;
|
||
|
for(Index j = 0; j < cols; j++)
|
||
|
for(Index i = 0; i < rows; i++)
|
||
|
{
|
||
|
if(m(i,j) < minc)
|
||
|
{
|
||
|
minc = m(i,j);
|
||
|
minrow = i;
|
||
|
mincol = j;
|
||
|
}
|
||
|
if(m(i,j) > maxc)
|
||
|
{
|
||
|
maxc = m(i,j);
|
||
|
maxrow = i;
|
||
|
maxcol = j;
|
||
|
}
|
||
|
}
|
||
|
Index eigen_minrow, eigen_mincol, eigen_maxrow, eigen_maxcol;
|
||
|
Scalar eigen_minc, eigen_maxc;
|
||
|
eigen_minc = m.minCoeff(&eigen_minrow,&eigen_mincol);
|
||
|
eigen_maxc = m.maxCoeff(&eigen_maxrow,&eigen_maxcol);
|
||
|
VERIFY(minrow == eigen_minrow);
|
||
|
VERIFY(maxrow == eigen_maxrow);
|
||
|
VERIFY(mincol == eigen_mincol);
|
||
|
VERIFY(maxcol == eigen_maxcol);
|
||
|
VERIFY_IS_APPROX(minc, eigen_minc);
|
||
|
VERIFY_IS_APPROX(maxc, eigen_maxc);
|
||
|
VERIFY_IS_APPROX(minc, m.minCoeff());
|
||
|
VERIFY_IS_APPROX(maxc, m.maxCoeff());
|
||
|
|
||
|
eigen_maxc = (m.adjoint()*m).maxCoeff(&eigen_maxrow,&eigen_maxcol);
|
||
|
Index maxrow2=0,maxcol2=0;
|
||
|
eigen_maxc = (m.adjoint()*m).eval().maxCoeff(&maxrow2,&maxcol2);
|
||
|
VERIFY(maxrow2 == eigen_maxrow);
|
||
|
VERIFY(maxcol2 == eigen_maxcol);
|
||
|
|
||
|
if (!NumTraits<Scalar>::IsInteger && m.size() > 2) {
|
||
|
// Test NaN propagation by replacing an element with NaN.
|
||
|
bool stop = false;
|
||
|
for (Index j = 0; j < cols && !stop; ++j) {
|
||
|
for (Index i = 0; i < rows && !stop; ++i) {
|
||
|
if (!(j == mincol && i == minrow) &&
|
||
|
!(j == maxcol && i == maxrow)) {
|
||
|
m(i,j) = NumTraits<Scalar>::quiet_NaN();
|
||
|
stop = true;
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
eigen_minc = m.template minCoeff<PropagateNumbers>(&eigen_minrow, &eigen_mincol);
|
||
|
eigen_maxc = m.template maxCoeff<PropagateNumbers>(&eigen_maxrow, &eigen_maxcol);
|
||
|
VERIFY(minrow == eigen_minrow);
|
||
|
VERIFY(maxrow == eigen_maxrow);
|
||
|
VERIFY(mincol == eigen_mincol);
|
||
|
VERIFY(maxcol == eigen_maxcol);
|
||
|
VERIFY_IS_APPROX(minc, eigen_minc);
|
||
|
VERIFY_IS_APPROX(maxc, eigen_maxc);
|
||
|
VERIFY_IS_APPROX(minc, m.template minCoeff<PropagateNumbers>());
|
||
|
VERIFY_IS_APPROX(maxc, m.template maxCoeff<PropagateNumbers>());
|
||
|
|
||
|
eigen_minc = m.template minCoeff<PropagateNaN>(&eigen_minrow, &eigen_mincol);
|
||
|
eigen_maxc = m.template maxCoeff<PropagateNaN>(&eigen_maxrow, &eigen_maxcol);
|
||
|
VERIFY(minrow != eigen_minrow || mincol != eigen_mincol);
|
||
|
VERIFY(maxrow != eigen_maxrow || maxcol != eigen_maxcol);
|
||
|
VERIFY((numext::isnan)(eigen_minc));
|
||
|
VERIFY((numext::isnan)(eigen_maxc));
|
||
|
}
|
||
|
|
||
|
}
|
||
|
|
||
|
template<typename VectorType> void vectorVisitor(const VectorType& w)
|
||
|
{
|
||
|
typedef typename VectorType::Scalar Scalar;
|
||
|
|
||
|
Index size = w.size();
|
||
|
|
||
|
// construct a random vector where all coefficients are different
|
||
|
VectorType v;
|
||
|
v = VectorType::Random(size);
|
||
|
for(Index i = 0; i < size; i++)
|
||
|
for(Index i2 = 0; i2 < i; i2++)
|
||
|
while(v(i) == v(i2)) // yes, ==
|
||
|
v(i) = internal::random<Scalar>();
|
||
|
|
||
|
Scalar minc = v(0), maxc = v(0);
|
||
|
Index minidx=0, maxidx=0;
|
||
|
for(Index i = 0; i < size; i++)
|
||
|
{
|
||
|
if(v(i) < minc)
|
||
|
{
|
||
|
minc = v(i);
|
||
|
minidx = i;
|
||
|
}
|
||
|
if(v(i) > maxc)
|
||
|
{
|
||
|
maxc = v(i);
|
||
|
maxidx = i;
|
||
|
}
|
||
|
}
|
||
|
Index eigen_minidx, eigen_maxidx;
|
||
|
Scalar eigen_minc, eigen_maxc;
|
||
|
eigen_minc = v.minCoeff(&eigen_minidx);
|
||
|
eigen_maxc = v.maxCoeff(&eigen_maxidx);
|
||
|
VERIFY(minidx == eigen_minidx);
|
||
|
VERIFY(maxidx == eigen_maxidx);
|
||
|
VERIFY_IS_APPROX(minc, eigen_minc);
|
||
|
VERIFY_IS_APPROX(maxc, eigen_maxc);
|
||
|
VERIFY_IS_APPROX(minc, v.minCoeff());
|
||
|
VERIFY_IS_APPROX(maxc, v.maxCoeff());
|
||
|
|
||
|
Index idx0 = internal::random<Index>(0,size-1);
|
||
|
Index idx1 = eigen_minidx;
|
||
|
Index idx2 = eigen_maxidx;
|
||
|
VectorType v1(v), v2(v);
|
||
|
v1(idx0) = v1(idx1);
|
||
|
v2(idx0) = v2(idx2);
|
||
|
v1.minCoeff(&eigen_minidx);
|
||
|
v2.maxCoeff(&eigen_maxidx);
|
||
|
VERIFY(eigen_minidx == (std::min)(idx0,idx1));
|
||
|
VERIFY(eigen_maxidx == (std::min)(idx0,idx2));
|
||
|
|
||
|
if (!NumTraits<Scalar>::IsInteger && size > 2) {
|
||
|
// Test NaN propagation by replacing an element with NaN.
|
||
|
for (Index i = 0; i < size; ++i) {
|
||
|
if (i != minidx && i != maxidx) {
|
||
|
v(i) = NumTraits<Scalar>::quiet_NaN();
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
eigen_minc = v.template minCoeff<PropagateNumbers>(&eigen_minidx);
|
||
|
eigen_maxc = v.template maxCoeff<PropagateNumbers>(&eigen_maxidx);
|
||
|
VERIFY(minidx == eigen_minidx);
|
||
|
VERIFY(maxidx == eigen_maxidx);
|
||
|
VERIFY_IS_APPROX(minc, eigen_minc);
|
||
|
VERIFY_IS_APPROX(maxc, eigen_maxc);
|
||
|
VERIFY_IS_APPROX(minc, v.template minCoeff<PropagateNumbers>());
|
||
|
VERIFY_IS_APPROX(maxc, v.template maxCoeff<PropagateNumbers>());
|
||
|
|
||
|
eigen_minc = v.template minCoeff<PropagateNaN>(&eigen_minidx);
|
||
|
eigen_maxc = v.template maxCoeff<PropagateNaN>(&eigen_maxidx);
|
||
|
VERIFY(minidx != eigen_minidx);
|
||
|
VERIFY(maxidx != eigen_maxidx);
|
||
|
VERIFY((numext::isnan)(eigen_minc));
|
||
|
VERIFY((numext::isnan)(eigen_maxc));
|
||
|
}
|
||
|
}
|
||
|
|
||
|
EIGEN_DECLARE_TEST(visitor)
|
||
|
{
|
||
|
for(int i = 0; i < g_repeat; i++) {
|
||
|
CALL_SUBTEST_1( matrixVisitor(Matrix<float, 1, 1>()) );
|
||
|
CALL_SUBTEST_2( matrixVisitor(Matrix2f()) );
|
||
|
CALL_SUBTEST_3( matrixVisitor(Matrix4d()) );
|
||
|
CALL_SUBTEST_4( matrixVisitor(MatrixXd(8, 12)) );
|
||
|
CALL_SUBTEST_5( matrixVisitor(Matrix<double,Dynamic,Dynamic,RowMajor>(20, 20)) );
|
||
|
CALL_SUBTEST_6( matrixVisitor(MatrixXi(8, 12)) );
|
||
|
}
|
||
|
for(int i = 0; i < g_repeat; i++) {
|
||
|
CALL_SUBTEST_7( vectorVisitor(Vector4f()) );
|
||
|
CALL_SUBTEST_7( vectorVisitor(Matrix<int,12,1>()) );
|
||
|
CALL_SUBTEST_8( vectorVisitor(VectorXd(10)) );
|
||
|
CALL_SUBTEST_9( vectorVisitor(RowVectorXd(10)) );
|
||
|
CALL_SUBTEST_10( vectorVisitor(VectorXf(33)) );
|
||
|
}
|
||
|
}
|