You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
79 lines
2.1 KiB
79 lines
2.1 KiB
// This file is part of Eigen, a lightweight C++ template library
|
|
// for linear algebra.
|
|
//
|
|
// Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com>
|
|
//
|
|
// This Source Code Form is subject to the terms of the Mozilla
|
|
// Public License v. 2.0. If a copy of the MPL was not distributed
|
|
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
|
|
|
#include "main.h"
|
|
|
|
#include <Eigen/Core>
|
|
#include <Eigen/CXX11/Tensor>
|
|
|
|
using Eigen::MatrixXf;
|
|
using Eigen::Tensor;
|
|
|
|
static void test_simple()
|
|
{
|
|
MatrixXf m1(3,3);
|
|
MatrixXf m2(3,3);
|
|
m1.setRandom();
|
|
m2.setRandom();
|
|
|
|
TensorMap<Tensor<float, 2> > mat1(m1.data(), 3,3);
|
|
TensorMap<Tensor<float, 2> > mat2(m2.data(), 3,3);
|
|
|
|
Tensor<float, 2> mat3(3,3);
|
|
mat3 = mat1;
|
|
|
|
typedef Tensor<float, 1>::DimensionPair DimPair;
|
|
Eigen::array<DimPair, 1> dims;
|
|
dims[0] = DimPair(1, 0);
|
|
|
|
mat3 = mat3.contract(mat2, dims).eval();
|
|
|
|
VERIFY_IS_APPROX(mat3(0, 0), (m1*m2).eval()(0,0));
|
|
VERIFY_IS_APPROX(mat3(0, 1), (m1*m2).eval()(0,1));
|
|
VERIFY_IS_APPROX(mat3(0, 2), (m1*m2).eval()(0,2));
|
|
VERIFY_IS_APPROX(mat3(1, 0), (m1*m2).eval()(1,0));
|
|
VERIFY_IS_APPROX(mat3(1, 1), (m1*m2).eval()(1,1));
|
|
VERIFY_IS_APPROX(mat3(1, 2), (m1*m2).eval()(1,2));
|
|
VERIFY_IS_APPROX(mat3(2, 0), (m1*m2).eval()(2,0));
|
|
VERIFY_IS_APPROX(mat3(2, 1), (m1*m2).eval()(2,1));
|
|
VERIFY_IS_APPROX(mat3(2, 2), (m1*m2).eval()(2,2));
|
|
}
|
|
|
|
|
|
static void test_const()
|
|
{
|
|
MatrixXf input(3,3);
|
|
input.setRandom();
|
|
MatrixXf output = input;
|
|
output.rowwise() -= input.colwise().maxCoeff();
|
|
|
|
Eigen::array<int, 1> depth_dim;
|
|
depth_dim[0] = 0;
|
|
Tensor<float, 2>::Dimensions dims2d;
|
|
dims2d[0] = 1;
|
|
dims2d[1] = 3;
|
|
Eigen::array<int, 2> bcast;
|
|
bcast[0] = 3;
|
|
bcast[1] = 1;
|
|
const TensorMap<const Tensor<float, 2> > input_tensor(input.data(), 3, 3);
|
|
Tensor<float, 2> output_tensor= (input_tensor - input_tensor.maximum(depth_dim).eval().reshape(dims2d).broadcast(bcast));
|
|
|
|
for (int i = 0; i < 3; ++i) {
|
|
for (int j = 0; j < 3; ++j) {
|
|
VERIFY_IS_APPROX(output(i, j), output_tensor(i, j));
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
EIGEN_DECLARE_TEST(cxx11_tensor_forced_eval)
|
|
{
|
|
CALL_SUBTEST(test_simple());
|
|
CALL_SUBTEST(test_const());
|
|
}
|
|
|