You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							419 lines
						
					
					
						
							14 KiB
						
					
					
				
			
		
		
	
	
							419 lines
						
					
					
						
							14 KiB
						
					
					
				| // This file is part of Eigen, a lightweight C++ template library
 | |
| // for linear algebra. 
 | |
| //
 | |
| // Copyright (C) 2009 Mark Borgerding mark a borgerding net
 | |
| //
 | |
| // This Source Code Form is subject to the terms of the Mozilla
 | |
| // Public License v. 2.0. If a copy of the MPL was not distributed
 | |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
 | |
| 
 | |
| #ifndef EIGEN_FFT_H
 | |
| #define EIGEN_FFT_H
 | |
| 
 | |
| #include <complex>
 | |
| #include <vector>
 | |
| #include <map>
 | |
| #include "../../Eigen/Core"
 | |
| 
 | |
| 
 | |
| /**
 | |
|   * \defgroup FFT_Module Fast Fourier Transform module
 | |
|   *
 | |
|   * \code
 | |
|   * #include <unsupported/Eigen/FFT>
 | |
|   * \endcode
 | |
|   *
 | |
|   * This module provides Fast Fourier transformation, with a configurable backend
 | |
|   * implementation.
 | |
|   *
 | |
|   * The default implementation is based on kissfft. It is a small, free, and
 | |
|   * reasonably efficient default.
 | |
|   *
 | |
|   * There are currently two implementation backend:
 | |
|   *
 | |
|   * - fftw (http://www.fftw.org) : faster, GPL -- incompatible with Eigen in LGPL form, bigger code size.
 | |
|   * - MKL (http://en.wikipedia.org/wiki/Math_Kernel_Library) : fastest, commercial -- may be incompatible with Eigen in GPL form.
 | |
|   *
 | |
|   * \section FFTDesign Design
 | |
|   *
 | |
|   * The following design decisions were made concerning scaling and
 | |
|   * half-spectrum for real FFT.
 | |
|   *
 | |
|   * The intent is to facilitate generic programming and ease migrating code
 | |
|   * from  Matlab/octave.
 | |
|   * We think the default behavior of Eigen/FFT should favor correctness and
 | |
|   * generality over speed. Of course, the caller should be able to "opt-out" from this
 | |
|   * behavior and get the speed increase if they want it.
 | |
|   *
 | |
|   * 1) %Scaling:
 | |
|   * Other libraries (FFTW,IMKL,KISSFFT)  do not perform scaling, so there
 | |
|   * is a constant gain incurred after the forward&inverse transforms , so 
 | |
|   * IFFT(FFT(x)) = Kx;  this is done to avoid a vector-by-value multiply.  
 | |
|   * The downside is that algorithms that worked correctly in Matlab/octave 
 | |
|   * don't behave the same way once implemented in C++.
 | |
|   *
 | |
|   * How Eigen/FFT differs: invertible scaling is performed so IFFT( FFT(x) ) = x. 
 | |
|   *
 | |
|   * 2) Real FFT half-spectrum
 | |
|   * Other libraries use only half the frequency spectrum (plus one extra 
 | |
|   * sample for the Nyquist bin) for a real FFT, the other half is the 
 | |
|   * conjugate-symmetric of the first half.  This saves them a copy and some 
 | |
|   * memory.  The downside is the caller needs to have special logic for the 
 | |
|   * number of bins in complex vs real.
 | |
|   *
 | |
|   * How Eigen/FFT differs: The full spectrum is returned from the forward 
 | |
|   * transform.  This facilitates generic template programming by obviating 
 | |
|   * separate specializations for real vs complex.  On the inverse
 | |
|   * transform, only half the spectrum is actually used if the output type is real.
 | |
|   */
 | |
|  
 | |
| 
 | |
| #include "../../Eigen/src/Core/util/DisableStupidWarnings.h"
 | |
| 
 | |
| #ifdef EIGEN_FFTW_DEFAULT
 | |
| // FFTW: faster, GPL -- incompatible with Eigen in LGPL form, bigger code size
 | |
| #  include <fftw3.h>
 | |
| #  include "src/FFT/ei_fftw_impl.h"
 | |
|    namespace Eigen {
 | |
|      //template <typename T> typedef struct internal::fftw_impl  default_fft_impl; this does not work
 | |
|      template <typename T> struct default_fft_impl : public internal::fftw_impl<T> {};
 | |
|    }
 | |
| #elif defined EIGEN_MKL_DEFAULT
 | |
| // TODO 
 | |
| // intel Math Kernel Library: fastest, commercial -- may be incompatible with Eigen in GPL form
 | |
| #  include "src/FFT/ei_imklfft_impl.h"
 | |
|    namespace Eigen {
 | |
|      template <typename T> struct default_fft_impl : public internal::imklfft_impl {};
 | |
|    }
 | |
| #else
 | |
| // internal::kissfft_impl:  small, free, reasonably efficient default, derived from kissfft
 | |
| //
 | |
| # include "src/FFT/ei_kissfft_impl.h"
 | |
|   namespace Eigen {
 | |
|      template <typename T> 
 | |
|        struct default_fft_impl : public internal::kissfft_impl<T> {};
 | |
|   }
 | |
| #endif
 | |
| 
 | |
| namespace Eigen {
 | |
| 
 | |
|  
 | |
| // 
 | |
| template<typename T_SrcMat,typename T_FftIfc> struct fft_fwd_proxy;
 | |
| template<typename T_SrcMat,typename T_FftIfc> struct fft_inv_proxy;
 | |
| 
 | |
| namespace internal {
 | |
| template<typename T_SrcMat,typename T_FftIfc>
 | |
| struct traits< fft_fwd_proxy<T_SrcMat,T_FftIfc> >
 | |
| {
 | |
|   typedef typename T_SrcMat::PlainObject ReturnType;
 | |
| };
 | |
| template<typename T_SrcMat,typename T_FftIfc>
 | |
| struct traits< fft_inv_proxy<T_SrcMat,T_FftIfc> >
 | |
| {
 | |
|   typedef typename T_SrcMat::PlainObject ReturnType;
 | |
| };
 | |
| }
 | |
| 
 | |
| template<typename T_SrcMat,typename T_FftIfc> 
 | |
| struct fft_fwd_proxy
 | |
|  : public ReturnByValue<fft_fwd_proxy<T_SrcMat,T_FftIfc> >
 | |
| {
 | |
|   typedef DenseIndex Index;
 | |
| 
 | |
|   fft_fwd_proxy(const T_SrcMat& src,T_FftIfc & fft, Index nfft) : m_src(src),m_ifc(fft), m_nfft(nfft) {}
 | |
| 
 | |
|   template<typename T_DestMat> void evalTo(T_DestMat& dst) const;
 | |
| 
 | |
|   Index rows() const { return m_src.rows(); }
 | |
|   Index cols() const { return m_src.cols(); }
 | |
| protected:
 | |
|   const T_SrcMat & m_src;
 | |
|   T_FftIfc & m_ifc;
 | |
|   Index m_nfft;
 | |
| };
 | |
| 
 | |
| template<typename T_SrcMat,typename T_FftIfc> 
 | |
| struct fft_inv_proxy
 | |
|  : public ReturnByValue<fft_inv_proxy<T_SrcMat,T_FftIfc> >
 | |
| {
 | |
|   typedef DenseIndex Index;
 | |
| 
 | |
|   fft_inv_proxy(const T_SrcMat& src,T_FftIfc & fft, Index nfft) : m_src(src),m_ifc(fft), m_nfft(nfft) {}
 | |
| 
 | |
|   template<typename T_DestMat> void evalTo(T_DestMat& dst) const;
 | |
| 
 | |
|   Index rows() const { return m_src.rows(); }
 | |
|   Index cols() const { return m_src.cols(); }
 | |
| protected:
 | |
|   const T_SrcMat & m_src;
 | |
|   T_FftIfc & m_ifc;
 | |
|   Index m_nfft;
 | |
| };
 | |
| 
 | |
| 
 | |
| template <typename T_Scalar,
 | |
|          typename T_Impl=default_fft_impl<T_Scalar> >
 | |
| class FFT
 | |
| {
 | |
|   public:
 | |
|     typedef T_Impl impl_type;
 | |
|     typedef DenseIndex Index;
 | |
|     typedef typename impl_type::Scalar Scalar;
 | |
|     typedef typename impl_type::Complex Complex;
 | |
| 
 | |
|     enum Flag {
 | |
|       Default=0, // goof proof
 | |
|       Unscaled=1,
 | |
|       HalfSpectrum=2,
 | |
|       // SomeOtherSpeedOptimization=4
 | |
|       Speedy=32767
 | |
|     };
 | |
| 
 | |
|     FFT( const impl_type & impl=impl_type() , Flag flags=Default ) :m_impl(impl),m_flag(flags) { }
 | |
| 
 | |
|     inline
 | |
|     bool HasFlag(Flag f) const { return (m_flag & (int)f) == f;}
 | |
| 
 | |
|     inline
 | |
|     void SetFlag(Flag f) { m_flag |= (int)f;}
 | |
| 
 | |
|     inline
 | |
|     void ClearFlag(Flag f) { m_flag &= (~(int)f);}
 | |
| 
 | |
|     inline
 | |
|     void fwd( Complex * dst, const Scalar * src, Index nfft)
 | |
|     {
 | |
|         m_impl.fwd(dst,src,static_cast<int>(nfft));
 | |
|         if ( HasFlag(HalfSpectrum) == false)
 | |
|           ReflectSpectrum(dst,nfft);
 | |
|     }
 | |
| 
 | |
|     inline
 | |
|     void fwd( Complex * dst, const Complex * src, Index nfft)
 | |
|     {
 | |
|         m_impl.fwd(dst,src,static_cast<int>(nfft));
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|     inline 
 | |
|     void fwd2(Complex * dst, const Complex * src, int n0,int n1)
 | |
|     {
 | |
|       m_impl.fwd2(dst,src,n0,n1);
 | |
|     }
 | |
|     */
 | |
| 
 | |
|     template <typename _Input>
 | |
|     inline
 | |
|     void fwd( std::vector<Complex> & dst, const std::vector<_Input> & src) 
 | |
|     {
 | |
|       if ( NumTraits<_Input>::IsComplex == 0 && HasFlag(HalfSpectrum) )
 | |
|         dst.resize( (src.size()>>1)+1); // half the bins + Nyquist bin
 | |
|       else
 | |
|         dst.resize(src.size());
 | |
|       fwd(&dst[0],&src[0],src.size());
 | |
|     }
 | |
| 
 | |
|     template<typename InputDerived, typename ComplexDerived>
 | |
|     inline
 | |
|     void fwd( MatrixBase<ComplexDerived> & dst, const MatrixBase<InputDerived> & src, Index nfft=-1)
 | |
|     {
 | |
|       typedef typename ComplexDerived::Scalar dst_type;
 | |
|       typedef typename InputDerived::Scalar src_type;
 | |
|       EIGEN_STATIC_ASSERT_VECTOR_ONLY(InputDerived)
 | |
|       EIGEN_STATIC_ASSERT_VECTOR_ONLY(ComplexDerived)
 | |
|       EIGEN_STATIC_ASSERT_SAME_VECTOR_SIZE(ComplexDerived,InputDerived) // size at compile-time
 | |
|       EIGEN_STATIC_ASSERT((internal::is_same<dst_type, Complex>::value),
 | |
|             YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY)
 | |
|       EIGEN_STATIC_ASSERT(int(InputDerived::Flags)&int(ComplexDerived::Flags)&DirectAccessBit,
 | |
|             THIS_METHOD_IS_ONLY_FOR_EXPRESSIONS_WITH_DIRECT_MEMORY_ACCESS_SUCH_AS_MAP_OR_PLAIN_MATRICES)
 | |
| 
 | |
|       if (nfft<1)
 | |
|         nfft = src.size();
 | |
| 
 | |
|       if ( NumTraits< src_type >::IsComplex == 0 && HasFlag(HalfSpectrum) )
 | |
|         dst.derived().resize( (nfft>>1)+1);
 | |
|       else
 | |
|         dst.derived().resize(nfft);
 | |
| 
 | |
|       if ( src.innerStride() != 1 || src.size() < nfft ) {
 | |
|         Matrix<src_type,1,Dynamic> tmp;
 | |
|         if (src.size()<nfft) {
 | |
|           tmp.setZero(nfft);
 | |
|           tmp.block(0,0,src.size(),1 ) = src;
 | |
|         }else{
 | |
|           tmp = src;
 | |
|         }
 | |
|         fwd( &dst[0],&tmp[0],nfft );
 | |
|       }else{
 | |
|         fwd( &dst[0],&src[0],nfft );
 | |
|       }
 | |
|     }
 | |
|  
 | |
|     template<typename InputDerived>
 | |
|     inline
 | |
|     fft_fwd_proxy< MatrixBase<InputDerived>, FFT<T_Scalar,T_Impl> >
 | |
|     fwd( const MatrixBase<InputDerived> & src, Index nfft=-1)
 | |
|     {
 | |
|       return fft_fwd_proxy< MatrixBase<InputDerived> ,FFT<T_Scalar,T_Impl> >( src, *this,nfft );
 | |
|     }
 | |
| 
 | |
|     template<typename InputDerived>
 | |
|     inline
 | |
|     fft_inv_proxy< MatrixBase<InputDerived>, FFT<T_Scalar,T_Impl> >
 | |
|     inv( const MatrixBase<InputDerived> & src, Index nfft=-1)
 | |
|     {
 | |
|       return  fft_inv_proxy< MatrixBase<InputDerived> ,FFT<T_Scalar,T_Impl> >( src, *this,nfft );
 | |
|     }
 | |
| 
 | |
|     inline
 | |
|     void inv( Complex * dst, const Complex * src, Index nfft)
 | |
|     {
 | |
|       m_impl.inv( dst,src,static_cast<int>(nfft) );
 | |
|       if ( HasFlag( Unscaled ) == false)
 | |
|         scale(dst,Scalar(1./nfft),nfft); // scale the time series
 | |
|     }
 | |
| 
 | |
|     inline
 | |
|     void inv( Scalar * dst, const Complex * src, Index nfft)
 | |
|     {
 | |
|       m_impl.inv( dst,src,static_cast<int>(nfft) );
 | |
|       if ( HasFlag( Unscaled ) == false)
 | |
|         scale(dst,Scalar(1./nfft),nfft); // scale the time series
 | |
|     }
 | |
| 
 | |
|     template<typename OutputDerived, typename ComplexDerived>
 | |
|     inline
 | |
|     void inv( MatrixBase<OutputDerived> & dst, const MatrixBase<ComplexDerived> & src, Index nfft=-1)
 | |
|     {
 | |
|       typedef typename ComplexDerived::Scalar src_type;
 | |
|       typedef typename ComplexDerived::RealScalar real_type;
 | |
|       typedef typename OutputDerived::Scalar dst_type;
 | |
|       const bool realfft= (NumTraits<dst_type>::IsComplex == 0);
 | |
|       EIGEN_STATIC_ASSERT_VECTOR_ONLY(OutputDerived)
 | |
|       EIGEN_STATIC_ASSERT_VECTOR_ONLY(ComplexDerived)
 | |
|       EIGEN_STATIC_ASSERT_SAME_VECTOR_SIZE(ComplexDerived,OutputDerived) // size at compile-time
 | |
|       EIGEN_STATIC_ASSERT((internal::is_same<src_type, Complex>::value),
 | |
|             YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY)
 | |
|       EIGEN_STATIC_ASSERT(int(OutputDerived::Flags)&int(ComplexDerived::Flags)&DirectAccessBit,
 | |
|             THIS_METHOD_IS_ONLY_FOR_EXPRESSIONS_WITH_DIRECT_MEMORY_ACCESS_SUCH_AS_MAP_OR_PLAIN_MATRICES)
 | |
| 
 | |
|       if (nfft<1) { //automatic FFT size determination
 | |
|         if ( realfft && HasFlag(HalfSpectrum) ) 
 | |
|           nfft = 2*(src.size()-1); //assume even fft size
 | |
|         else
 | |
|           nfft = src.size();
 | |
|       }
 | |
|       dst.derived().resize( nfft );
 | |
| 
 | |
|       // check for nfft that does not fit the input data size
 | |
|       Index resize_input= ( realfft && HasFlag(HalfSpectrum) )
 | |
|         ? ( (nfft/2+1) - src.size() )
 | |
|         : ( nfft - src.size() );
 | |
| 
 | |
|       if ( src.innerStride() != 1 || resize_input ) {
 | |
|         // if the vector is strided, then we need to copy it to a packed temporary
 | |
|         Matrix<src_type,1,Dynamic> tmp;
 | |
|         if ( resize_input ) {
 | |
|           size_t ncopy = (std::min)(src.size(),src.size() + resize_input);
 | |
|           tmp.setZero(src.size() + resize_input);
 | |
|           if ( realfft && HasFlag(HalfSpectrum) ) {
 | |
|             // pad at the Nyquist bin
 | |
|             tmp.head(ncopy) = src.head(ncopy);
 | |
|             tmp(ncopy-1) = real(tmp(ncopy-1)); // enforce real-only Nyquist bin
 | |
|           }else{
 | |
|             size_t nhead,ntail;
 | |
|             nhead = 1+ncopy/2-1; // range  [0:pi)
 | |
|             ntail = ncopy/2-1;   // range (-pi:0)
 | |
|             tmp.head(nhead) = src.head(nhead);
 | |
|             tmp.tail(ntail) = src.tail(ntail);
 | |
|             if (resize_input<0) { //shrinking -- create the Nyquist bin as the average of the two bins that fold into it
 | |
|               tmp(nhead) = ( src(nfft/2) + src( src.size() - nfft/2 ) )*real_type(.5);
 | |
|             }else{ // expanding -- split the old Nyquist bin into two halves
 | |
|               tmp(nhead) = src(nhead) * real_type(.5);
 | |
|               tmp(tmp.size()-nhead) = tmp(nhead);
 | |
|             }
 | |
|           }
 | |
|         }else{
 | |
|           tmp = src;
 | |
|         }
 | |
|         inv( &dst[0],&tmp[0], nfft);
 | |
|       }else{
 | |
|         inv( &dst[0],&src[0], nfft);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     template <typename _Output>
 | |
|     inline
 | |
|     void inv( std::vector<_Output> & dst, const std::vector<Complex> & src,Index nfft=-1)
 | |
|     {
 | |
|       if (nfft<1)
 | |
|         nfft = ( NumTraits<_Output>::IsComplex == 0 && HasFlag(HalfSpectrum) ) ? 2*(src.size()-1) : src.size();
 | |
|       dst.resize( nfft );
 | |
|       inv( &dst[0],&src[0],nfft);
 | |
|     }
 | |
| 
 | |
| 
 | |
|     /*
 | |
|     // TODO: multi-dimensional FFTs
 | |
|     inline 
 | |
|     void inv2(Complex * dst, const Complex * src, int n0,int n1)
 | |
|     {
 | |
|       m_impl.inv2(dst,src,n0,n1);
 | |
|       if ( HasFlag( Unscaled ) == false)
 | |
|           scale(dst,1./(n0*n1),n0*n1);
 | |
|     }
 | |
|   */
 | |
| 
 | |
|     inline
 | |
|     impl_type & impl() {return m_impl;}
 | |
|   private:
 | |
| 
 | |
|     template <typename T_Data>
 | |
|     inline
 | |
|     void scale(T_Data * x,Scalar s,Index nx)
 | |
|     {
 | |
| #if 1
 | |
|       for (int k=0;k<nx;++k)
 | |
|         *x++ *= s;
 | |
| #else
 | |
|       if ( ((ptrdiff_t)x) & 15 )
 | |
|         Matrix<T_Data, Dynamic, 1>::Map(x,nx) *= s;
 | |
|       else
 | |
|         Matrix<T_Data, Dynamic, 1>::MapAligned(x,nx) *= s;
 | |
|          //Matrix<T_Data, Dynamic, Dynamic>::Map(x,nx) * s;
 | |
| #endif  
 | |
|     }
 | |
| 
 | |
|     inline
 | |
|     void ReflectSpectrum(Complex * freq, Index nfft)
 | |
|     {
 | |
|       // create the implicit right-half spectrum (conjugate-mirror of the left-half)
 | |
|       Index nhbins=(nfft>>1)+1;
 | |
|       for (Index k=nhbins;k < nfft; ++k )
 | |
|         freq[k] = conj(freq[nfft-k]);
 | |
|     }
 | |
| 
 | |
|     impl_type m_impl;
 | |
|     int m_flag;
 | |
| };
 | |
| 
 | |
| template<typename T_SrcMat,typename T_FftIfc> 
 | |
| template<typename T_DestMat> inline 
 | |
| void fft_fwd_proxy<T_SrcMat,T_FftIfc>::evalTo(T_DestMat& dst) const
 | |
| {
 | |
|     m_ifc.fwd( dst, m_src, m_nfft);
 | |
| }
 | |
| 
 | |
| template<typename T_SrcMat,typename T_FftIfc> 
 | |
| template<typename T_DestMat> inline 
 | |
| void fft_inv_proxy<T_SrcMat,T_FftIfc>::evalTo(T_DestMat& dst) const
 | |
| {
 | |
|     m_ifc.inv( dst, m_src, m_nfft);
 | |
| }
 | |
| 
 | |
| }
 | |
| 
 | |
| #include "../../Eigen/src/Core/util/ReenableStupidWarnings.h"
 | |
| 
 | |
| #endif
 | |
| 
 |