You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
3378 lines
104 KiB
3378 lines
104 KiB
/*!
|
|
* \file
|
|
*
|
|
* \brief Various routines with dealing with CSR matrices
|
|
*
|
|
* \author George Karypis
|
|
* \version\verbatim $Id: csr.c 21044 2017-05-24 22:50:32Z karypis $ \endverbatim
|
|
*/
|
|
|
|
#include <GKlib.h>
|
|
|
|
#define OMPMINOPS 50000
|
|
|
|
/*************************************************************************/
|
|
/*! Allocate memory for a CSR matrix and initializes it
|
|
\returns the allocated matrix. The various fields are set to NULL.
|
|
*/
|
|
/**************************************************************************/
|
|
gk_csr_t *gk_csr_Create()
|
|
{
|
|
gk_csr_t *mat=NULL;
|
|
|
|
if ((mat = (gk_csr_t *)gk_malloc(sizeof(gk_csr_t), "gk_csr_Create: mat")))
|
|
gk_csr_Init(mat);
|
|
|
|
return mat;
|
|
}
|
|
|
|
|
|
/*************************************************************************/
|
|
/*! Initializes the matrix
|
|
\param mat is the matrix to be initialized.
|
|
*/
|
|
/*************************************************************************/
|
|
void gk_csr_Init(gk_csr_t *mat)
|
|
{
|
|
memset(mat, 0, sizeof(gk_csr_t));
|
|
mat->nrows = mat->ncols = 0;
|
|
}
|
|
|
|
|
|
/*************************************************************************/
|
|
/*! Frees all the memory allocated for matrix.
|
|
\param mat is the matrix to be freed.
|
|
*/
|
|
/*************************************************************************/
|
|
void gk_csr_Free(gk_csr_t **mat)
|
|
{
|
|
if (*mat == NULL)
|
|
return;
|
|
gk_csr_FreeContents(*mat);
|
|
gk_free((void **)mat, LTERM);
|
|
}
|
|
|
|
|
|
/*************************************************************************/
|
|
/*! Frees only the memory allocated for the matrix's different fields and
|
|
sets them to NULL.
|
|
\param mat is the matrix whose contents will be freed.
|
|
*/
|
|
/*************************************************************************/
|
|
void gk_csr_FreeContents(gk_csr_t *mat)
|
|
{
|
|
gk_free((void *)&mat->rowptr, &mat->rowind, &mat->rowval,
|
|
&mat->rowids, &mat->rlabels, &mat->rmap,
|
|
&mat->colptr, &mat->colind, &mat->colval,
|
|
&mat->colids, &mat->clabels, &mat->cmap,
|
|
&mat->rnorms, &mat->cnorms, &mat->rsums, &mat->csums,
|
|
&mat->rsizes, &mat->csizes, &mat->rvols, &mat->cvols,
|
|
&mat->rwgts, &mat->cwgts,
|
|
LTERM);
|
|
}
|
|
|
|
|
|
/*************************************************************************/
|
|
/*! Returns a copy of a matrix.
|
|
\param mat is the matrix to be duplicated.
|
|
\returns the newly created copy of the matrix.
|
|
*/
|
|
/**************************************************************************/
|
|
gk_csr_t *gk_csr_Dup(gk_csr_t *mat)
|
|
{
|
|
gk_csr_t *nmat;
|
|
|
|
nmat = gk_csr_Create();
|
|
|
|
nmat->nrows = mat->nrows;
|
|
nmat->ncols = mat->ncols;
|
|
|
|
/* copy the row structure */
|
|
if (mat->rowptr)
|
|
nmat->rowptr = gk_zcopy(mat->nrows+1, mat->rowptr,
|
|
gk_zmalloc(mat->nrows+1, "gk_csr_Dup: rowptr"));
|
|
if (mat->rowids)
|
|
nmat->rowids = gk_icopy(mat->nrows, mat->rowids,
|
|
gk_imalloc(mat->nrows, "gk_csr_Dup: rowids"));
|
|
if (mat->rlabels)
|
|
nmat->rlabels = gk_icopy(mat->nrows, mat->rlabels,
|
|
gk_imalloc(mat->nrows, "gk_csr_Dup: rlabels"));
|
|
if (mat->rnorms)
|
|
nmat->rnorms = gk_fcopy(mat->nrows, mat->rnorms,
|
|
gk_fmalloc(mat->nrows, "gk_csr_Dup: rnorms"));
|
|
if (mat->rsums)
|
|
nmat->rsums = gk_fcopy(mat->nrows, mat->rsums,
|
|
gk_fmalloc(mat->nrows, "gk_csr_Dup: rsums"));
|
|
if (mat->rsizes)
|
|
nmat->rsizes = gk_fcopy(mat->nrows, mat->rsizes,
|
|
gk_fmalloc(mat->nrows, "gk_csr_Dup: rsizes"));
|
|
if (mat->rvols)
|
|
nmat->rvols = gk_fcopy(mat->nrows, mat->rvols,
|
|
gk_fmalloc(mat->nrows, "gk_csr_Dup: rvols"));
|
|
if (mat->rwgts)
|
|
nmat->rwgts = gk_fcopy(mat->nrows, mat->rwgts,
|
|
gk_fmalloc(mat->nrows, "gk_csr_Dup: rwgts"));
|
|
if (mat->rowind)
|
|
nmat->rowind = gk_icopy(mat->rowptr[mat->nrows], mat->rowind,
|
|
gk_imalloc(mat->rowptr[mat->nrows], "gk_csr_Dup: rowind"));
|
|
if (mat->rowval)
|
|
nmat->rowval = gk_fcopy(mat->rowptr[mat->nrows], mat->rowval,
|
|
gk_fmalloc(mat->rowptr[mat->nrows], "gk_csr_Dup: rowval"));
|
|
|
|
/* copy the col structure */
|
|
if (mat->colptr)
|
|
nmat->colptr = gk_zcopy(mat->ncols+1, mat->colptr,
|
|
gk_zmalloc(mat->ncols+1, "gk_csr_Dup: colptr"));
|
|
if (mat->colids)
|
|
nmat->colids = gk_icopy(mat->ncols, mat->colids,
|
|
gk_imalloc(mat->ncols, "gk_csr_Dup: colids"));
|
|
if (mat->clabels)
|
|
nmat->clabels = gk_icopy(mat->ncols, mat->clabels,
|
|
gk_imalloc(mat->ncols, "gk_csr_Dup: clabels"));
|
|
if (mat->cnorms)
|
|
nmat->cnorms = gk_fcopy(mat->ncols, mat->cnorms,
|
|
gk_fmalloc(mat->ncols, "gk_csr_Dup: cnorms"));
|
|
if (mat->csums)
|
|
nmat->csums = gk_fcopy(mat->ncols, mat->csums,
|
|
gk_fmalloc(mat->ncols, "gk_csr_Dup: csums"));
|
|
if (mat->csizes)
|
|
nmat->csizes = gk_fcopy(mat->ncols, mat->csizes,
|
|
gk_fmalloc(mat->ncols, "gk_csr_Dup: csizes"));
|
|
if (mat->cvols)
|
|
nmat->cvols = gk_fcopy(mat->ncols, mat->cvols,
|
|
gk_fmalloc(mat->ncols, "gk_csr_Dup: cvols"));
|
|
if (mat->cwgts)
|
|
nmat->cwgts = gk_fcopy(mat->ncols, mat->cwgts,
|
|
gk_fmalloc(mat->ncols, "gk_csr_Dup: cwgts"));
|
|
if (mat->colind)
|
|
nmat->colind = gk_icopy(mat->colptr[mat->ncols], mat->colind,
|
|
gk_imalloc(mat->colptr[mat->ncols], "gk_csr_Dup: colind"));
|
|
if (mat->colval)
|
|
nmat->colval = gk_fcopy(mat->colptr[mat->ncols], mat->colval,
|
|
gk_fmalloc(mat->colptr[mat->ncols], "gk_csr_Dup: colval"));
|
|
|
|
return nmat;
|
|
}
|
|
|
|
|
|
/*************************************************************************/
|
|
/*! Returns a submatrix containint a set of consecutive rows.
|
|
\param mat is the original matrix.
|
|
\param rstart is the starting row.
|
|
\param nrows is the number of rows from rstart to extract.
|
|
\returns the row structure of the newly created submatrix.
|
|
*/
|
|
/**************************************************************************/
|
|
gk_csr_t *gk_csr_ExtractSubmatrix(gk_csr_t *mat, int rstart, int nrows)
|
|
{
|
|
ssize_t i;
|
|
gk_csr_t *nmat;
|
|
|
|
if (rstart+nrows > mat->nrows)
|
|
return NULL;
|
|
|
|
nmat = gk_csr_Create();
|
|
|
|
nmat->nrows = nrows;
|
|
nmat->ncols = mat->ncols;
|
|
|
|
/* copy the row structure */
|
|
if (mat->rowptr)
|
|
nmat->rowptr = gk_zcopy(nrows+1, mat->rowptr+rstart,
|
|
gk_zmalloc(nrows+1, "gk_csr_ExtractSubmatrix: rowptr"));
|
|
for (i=nrows; i>=0; i--)
|
|
nmat->rowptr[i] -= nmat->rowptr[0];
|
|
ASSERT(nmat->rowptr[0] == 0);
|
|
|
|
if (mat->rowids)
|
|
nmat->rowids = gk_icopy(nrows, mat->rowids+rstart,
|
|
gk_imalloc(nrows, "gk_csr_ExtractSubmatrix: rowids"));
|
|
if (mat->rnorms)
|
|
nmat->rnorms = gk_fcopy(nrows, mat->rnorms+rstart,
|
|
gk_fmalloc(nrows, "gk_csr_ExtractSubmatrix: rnorms"));
|
|
|
|
if (mat->rsums)
|
|
nmat->rsums = gk_fcopy(nrows, mat->rsums+rstart,
|
|
gk_fmalloc(nrows, "gk_csr_ExtractSubmatrix: rsums"));
|
|
|
|
ASSERT(nmat->rowptr[nrows] == mat->rowptr[rstart+nrows]-mat->rowptr[rstart]);
|
|
if (mat->rowind)
|
|
nmat->rowind = gk_icopy(mat->rowptr[rstart+nrows]-mat->rowptr[rstart],
|
|
mat->rowind+mat->rowptr[rstart],
|
|
gk_imalloc(mat->rowptr[rstart+nrows]-mat->rowptr[rstart],
|
|
"gk_csr_ExtractSubmatrix: rowind"));
|
|
if (mat->rowval)
|
|
nmat->rowval = gk_fcopy(mat->rowptr[rstart+nrows]-mat->rowptr[rstart],
|
|
mat->rowval+mat->rowptr[rstart],
|
|
gk_fmalloc(mat->rowptr[rstart+nrows]-mat->rowptr[rstart],
|
|
"gk_csr_ExtractSubmatrix: rowval"));
|
|
|
|
return nmat;
|
|
}
|
|
|
|
|
|
/*************************************************************************/
|
|
/*! Returns a submatrix containing a certain set of rows.
|
|
\param mat is the original matrix.
|
|
\param nrows is the number of rows to extract.
|
|
\param rind is the set of row numbers to extract.
|
|
\returns the row structure of the newly created submatrix.
|
|
*/
|
|
/**************************************************************************/
|
|
gk_csr_t *gk_csr_ExtractRows(gk_csr_t *mat, int nrows, int *rind)
|
|
{
|
|
ssize_t i, ii, j, nnz;
|
|
gk_csr_t *nmat;
|
|
|
|
nmat = gk_csr_Create();
|
|
|
|
nmat->nrows = nrows;
|
|
nmat->ncols = mat->ncols;
|
|
|
|
for (nnz=0, i=0; i<nrows; i++)
|
|
nnz += mat->rowptr[rind[i]+1]-mat->rowptr[rind[i]];
|
|
|
|
nmat->rowptr = gk_zmalloc(nmat->nrows+1, "gk_csr_ExtractPartition: rowptr");
|
|
nmat->rowind = gk_imalloc(nnz, "gk_csr_ExtractPartition: rowind");
|
|
nmat->rowval = gk_fmalloc(nnz, "gk_csr_ExtractPartition: rowval");
|
|
|
|
nmat->rowptr[0] = 0;
|
|
for (nnz=0, j=0, ii=0; ii<nrows; ii++) {
|
|
i = rind[ii];
|
|
gk_icopy(mat->rowptr[i+1]-mat->rowptr[i], mat->rowind+mat->rowptr[i], nmat->rowind+nnz);
|
|
gk_fcopy(mat->rowptr[i+1]-mat->rowptr[i], mat->rowval+mat->rowptr[i], nmat->rowval+nnz);
|
|
nnz += mat->rowptr[i+1]-mat->rowptr[i];
|
|
nmat->rowptr[++j] = nnz;
|
|
}
|
|
ASSERT(j == nmat->nrows);
|
|
|
|
return nmat;
|
|
}
|
|
|
|
|
|
/*************************************************************************/
|
|
/*! Returns a submatrix corresponding to a specified partitioning of rows.
|
|
\param mat is the original matrix.
|
|
\param part is the partitioning vector of the rows.
|
|
\param pid is the partition ID that will be extracted.
|
|
\returns the row structure of the newly created submatrix.
|
|
*/
|
|
/**************************************************************************/
|
|
gk_csr_t *gk_csr_ExtractPartition(gk_csr_t *mat, int *part, int pid)
|
|
{
|
|
ssize_t i, j, nnz;
|
|
gk_csr_t *nmat;
|
|
|
|
nmat = gk_csr_Create();
|
|
|
|
nmat->nrows = 0;
|
|
nmat->ncols = mat->ncols;
|
|
|
|
for (nnz=0, i=0; i<mat->nrows; i++) {
|
|
if (part[i] == pid) {
|
|
nmat->nrows++;
|
|
nnz += mat->rowptr[i+1]-mat->rowptr[i];
|
|
}
|
|
}
|
|
|
|
nmat->rowptr = gk_zmalloc(nmat->nrows+1, "gk_csr_ExtractPartition: rowptr");
|
|
nmat->rowind = gk_imalloc(nnz, "gk_csr_ExtractPartition: rowind");
|
|
nmat->rowval = gk_fmalloc(nnz, "gk_csr_ExtractPartition: rowval");
|
|
|
|
nmat->rowptr[0] = 0;
|
|
for (nnz=0, j=0, i=0; i<mat->nrows; i++) {
|
|
if (part[i] == pid) {
|
|
gk_icopy(mat->rowptr[i+1]-mat->rowptr[i], mat->rowind+mat->rowptr[i], nmat->rowind+nnz);
|
|
gk_fcopy(mat->rowptr[i+1]-mat->rowptr[i], mat->rowval+mat->rowptr[i], nmat->rowval+nnz);
|
|
nnz += mat->rowptr[i+1]-mat->rowptr[i];
|
|
nmat->rowptr[++j] = nnz;
|
|
}
|
|
}
|
|
ASSERT(j == nmat->nrows);
|
|
|
|
return nmat;
|
|
}
|
|
|
|
|
|
/*************************************************************************/
|
|
/*! Splits the matrix into multiple sub-matrices based on the provided
|
|
color array.
|
|
\param mat is the original matrix.
|
|
\param color is an array of size equal to the number of non-zeros
|
|
in the matrix (row-wise structure). The matrix is split into
|
|
as many parts as the number of colors. For meaningfull results,
|
|
the colors should be numbered consecutively starting from 0.
|
|
\returns an array of matrices for each supplied color number.
|
|
*/
|
|
/**************************************************************************/
|
|
gk_csr_t **gk_csr_Split(gk_csr_t *mat, int *color)
|
|
{
|
|
ssize_t i, j;
|
|
int nrows, ncolors;
|
|
ssize_t *rowptr;
|
|
int *rowind;
|
|
float *rowval;
|
|
gk_csr_t **smats;
|
|
|
|
nrows = mat->nrows;
|
|
rowptr = mat->rowptr;
|
|
rowind = mat->rowind;
|
|
rowval = mat->rowval;
|
|
|
|
ncolors = gk_imax(rowptr[nrows], color, 1)+1;
|
|
|
|
smats = (gk_csr_t **)gk_malloc(sizeof(gk_csr_t *)*ncolors, "gk_csr_Split: smats");
|
|
for (i=0; i<ncolors; i++) {
|
|
smats[i] = gk_csr_Create();
|
|
smats[i]->nrows = mat->nrows;
|
|
smats[i]->ncols = mat->ncols;
|
|
smats[i]->rowptr = gk_zsmalloc(nrows+1, 0, "gk_csr_Split: smats[i]->rowptr");
|
|
}
|
|
|
|
for (i=0; i<nrows; i++) {
|
|
for (j=rowptr[i]; j<rowptr[i+1]; j++)
|
|
smats[color[j]]->rowptr[i]++;
|
|
}
|
|
for (i=0; i<ncolors; i++)
|
|
MAKECSR(j, nrows, smats[i]->rowptr);
|
|
|
|
for (i=0; i<ncolors; i++) {
|
|
smats[i]->rowind = gk_imalloc(smats[i]->rowptr[nrows], "gk_csr_Split: smats[i]->rowind");
|
|
smats[i]->rowval = gk_fmalloc(smats[i]->rowptr[nrows], "gk_csr_Split: smats[i]->rowval");
|
|
}
|
|
|
|
for (i=0; i<nrows; i++) {
|
|
for (j=rowptr[i]; j<rowptr[i+1]; j++) {
|
|
smats[color[j]]->rowind[smats[color[j]]->rowptr[i]] = rowind[j];
|
|
smats[color[j]]->rowval[smats[color[j]]->rowptr[i]] = rowval[j];
|
|
smats[color[j]]->rowptr[i]++;
|
|
}
|
|
}
|
|
|
|
for (i=0; i<ncolors; i++)
|
|
SHIFTCSR(j, nrows, smats[i]->rowptr);
|
|
|
|
return smats;
|
|
}
|
|
|
|
|
|
/**************************************************************************/
|
|
/*! Determines the format of the CSR matrix based on the extension.
|
|
\param filename is the name of the file.
|
|
\param the user-supplied format.
|
|
\returns the type. The extension of the file directly maps to the
|
|
name of the format.
|
|
*/
|
|
/**************************************************************************/
|
|
int gk_csr_DetermineFormat(char *filename, int format)
|
|
{
|
|
if (format != GK_CSR_FMT_AUTO)
|
|
return format;
|
|
|
|
format = GK_CSR_FMT_CSR;
|
|
char *extension = gk_getextname(filename);
|
|
|
|
if (!strcmp(extension, "csr"))
|
|
format = GK_CSR_FMT_CSR;
|
|
else if (!strcmp(extension, "ijv"))
|
|
format = GK_CSR_FMT_IJV;
|
|
else if (!strcmp(extension, "cluto"))
|
|
format = GK_CSR_FMT_CLUTO;
|
|
else if (!strcmp(extension, "metis"))
|
|
format = GK_CSR_FMT_METIS;
|
|
else if (!strcmp(extension, "binrow"))
|
|
format = GK_CSR_FMT_BINROW;
|
|
else if (!strcmp(extension, "bincol"))
|
|
format = GK_CSR_FMT_BINCOL;
|
|
else if (!strcmp(extension, "bijv"))
|
|
format = GK_CSR_FMT_BIJV;
|
|
|
|
gk_free((void **)&extension, LTERM);
|
|
|
|
return format;
|
|
}
|
|
|
|
|
|
/**************************************************************************/
|
|
/*! Reads a CSR matrix from the supplied file and stores it the matrix's
|
|
forward structure.
|
|
\param filename is the file that stores the data.
|
|
\param format is either GK_CSR_FMT_METIS, GK_CSR_FMT_CLUTO,
|
|
GK_CSR_FMT_CSR, GK_CSR_FMT_BINROW, GK_CSR_FMT_BINCOL
|
|
specifying the type of the input format.
|
|
The GK_CSR_FMT_CSR does not contain a header
|
|
line, whereas the GK_CSR_FMT_BINROW is a binary format written
|
|
by gk_csr_Write() using the same format specifier.
|
|
\param readvals is either 1 or 0, indicating if the CSR file contains
|
|
values or it does not. It only applies when GK_CSR_FMT_CSR is
|
|
used.
|
|
\param numbering is either 1 or 0, indicating if the numbering of the
|
|
indices start from 1 or 0, respectively. If they start from 1,
|
|
they are automatically decreamented during input so that they
|
|
will start from 0. It only applies when GK_CSR_FMT_CSR is
|
|
used.
|
|
\returns the matrix that was read.
|
|
*/
|
|
/**************************************************************************/
|
|
gk_csr_t *gk_csr_Read(char *filename, int format, int readvals, int numbering)
|
|
{
|
|
ssize_t i, k, l;
|
|
size_t nfields, nrows, ncols, nnz, fmt, ncon;
|
|
size_t lnlen;
|
|
ssize_t *rowptr;
|
|
int *rowind, *iinds, *jinds, ival;
|
|
float *rowval=NULL, *vals, fval;
|
|
int readsizes, readwgts;
|
|
char *line=NULL, *head, *tail, fmtstr[256];
|
|
FILE *fpin;
|
|
gk_csr_t *mat=NULL;
|
|
|
|
format = gk_csr_DetermineFormat(filename, format);
|
|
|
|
if (!gk_fexists(filename))
|
|
gk_errexit(SIGERR, "File %s does not exist!\n", filename);
|
|
|
|
switch (format) {
|
|
case GK_CSR_FMT_BINROW:
|
|
mat = gk_csr_Create();
|
|
|
|
fpin = gk_fopen(filename, "rb", "gk_csr_Read: fpin");
|
|
if (fread(&(mat->nrows), sizeof(int32_t), 1, fpin) != 1)
|
|
gk_errexit(SIGERR, "Failed to read the nrows from file %s!\n", filename);
|
|
if (fread(&(mat->ncols), sizeof(int32_t), 1, fpin) != 1)
|
|
gk_errexit(SIGERR, "Failed to read the ncols from file %s!\n", filename);
|
|
mat->rowptr = gk_zmalloc(mat->nrows+1, "gk_csr_Read: rowptr");
|
|
if (fread(mat->rowptr, sizeof(ssize_t), mat->nrows+1, fpin) != mat->nrows+1)
|
|
gk_errexit(SIGERR, "Failed to read the rowptr from file %s!\n", filename);
|
|
mat->rowind = gk_imalloc(mat->rowptr[mat->nrows], "gk_csr_Read: rowind");
|
|
if (fread(mat->rowind, sizeof(int32_t), mat->rowptr[mat->nrows], fpin) != mat->rowptr[mat->nrows])
|
|
gk_errexit(SIGERR, "Failed to read the rowind from file %s!\n", filename);
|
|
if (readvals == 1) {
|
|
mat->rowval = gk_fmalloc(mat->rowptr[mat->nrows], "gk_csr_Read: rowval");
|
|
if (fread(mat->rowval, sizeof(float), mat->rowptr[mat->nrows], fpin) != mat->rowptr[mat->nrows])
|
|
gk_errexit(SIGERR, "Failed to read the rowval from file %s!\n", filename);
|
|
}
|
|
|
|
gk_fclose(fpin);
|
|
return mat;
|
|
|
|
break;
|
|
|
|
case GK_CSR_FMT_BINCOL:
|
|
mat = gk_csr_Create();
|
|
|
|
fpin = gk_fopen(filename, "rb", "gk_csr_Read: fpin");
|
|
if (fread(&(mat->nrows), sizeof(int32_t), 1, fpin) != 1)
|
|
gk_errexit(SIGERR, "Failed to read the nrows from file %s!\n", filename);
|
|
if (fread(&(mat->ncols), sizeof(int32_t), 1, fpin) != 1)
|
|
gk_errexit(SIGERR, "Failed to read the ncols from file %s!\n", filename);
|
|
mat->colptr = gk_zmalloc(mat->ncols+1, "gk_csr_Read: colptr");
|
|
if (fread(mat->colptr, sizeof(ssize_t), mat->ncols+1, fpin) != mat->ncols+1)
|
|
gk_errexit(SIGERR, "Failed to read the colptr from file %s!\n", filename);
|
|
mat->colind = gk_imalloc(mat->colptr[mat->ncols], "gk_csr_Read: colind");
|
|
if (fread(mat->colind, sizeof(int32_t), mat->colptr[mat->ncols], fpin) != mat->colptr[mat->ncols])
|
|
gk_errexit(SIGERR, "Failed to read the colind from file %s!\n", filename);
|
|
if (readvals) {
|
|
mat->colval = gk_fmalloc(mat->colptr[mat->ncols], "gk_csr_Read: colval");
|
|
if (fread(mat->colval, sizeof(float), mat->colptr[mat->ncols], fpin) != mat->colptr[mat->ncols])
|
|
gk_errexit(SIGERR, "Failed to read the colval from file %s!\n", filename);
|
|
}
|
|
|
|
gk_fclose(fpin);
|
|
return mat;
|
|
|
|
break;
|
|
|
|
|
|
case GK_CSR_FMT_IJV:
|
|
gk_getfilestats(filename, &nrows, &nnz, NULL, NULL);
|
|
|
|
if (readvals == 1 && 3*nrows != nnz)
|
|
gk_errexit(SIGERR, "Error: The number of numbers (%zd %d) in the input file is not a multiple of 3.\n", nnz, readvals);
|
|
if (readvals == 0 && 2*nrows != nnz)
|
|
gk_errexit(SIGERR, "Error: The number of numbers (%zd %d) in the input file is not a multiple of 2.\n", nnz, readvals);
|
|
|
|
nnz = nrows;
|
|
numbering = (numbering ? - 1 : 0);
|
|
|
|
/* read the data into three arrays */
|
|
iinds = gk_i32malloc(nnz, "iinds");
|
|
jinds = gk_i32malloc(nnz, "jinds");
|
|
vals = (readvals ? gk_fmalloc(nnz, "vals") : NULL);
|
|
|
|
fpin = gk_fopen(filename, "r", "gk_csr_Read: fpin");
|
|
for (nrows=0, ncols=0, i=0; i<nnz; i++) {
|
|
if (readvals) {
|
|
if (fscanf(fpin, "%d %d %f", &iinds[i], &jinds[i], &vals[i]) != 3)
|
|
gk_errexit(SIGERR, "Error: Failed to read (i, j, val) for nnz: %zd.\n", i);
|
|
}
|
|
else {
|
|
if (fscanf(fpin, "%d %d", &iinds[i], &jinds[i]) != 2)
|
|
gk_errexit(SIGERR, "Error: Failed to read (i, j) value for nnz: %zd.\n", i);
|
|
}
|
|
iinds[i] += numbering;
|
|
jinds[i] += numbering;
|
|
|
|
if (nrows < iinds[i])
|
|
nrows = iinds[i];
|
|
if (ncols < jinds[i])
|
|
ncols = jinds[i];
|
|
}
|
|
nrows++;
|
|
ncols++;
|
|
gk_fclose(fpin);
|
|
|
|
/* convert (i, j, v) into a CSR matrix */
|
|
mat = gk_csr_Create();
|
|
mat->nrows = nrows;
|
|
mat->ncols = ncols;
|
|
rowptr = mat->rowptr = gk_zsmalloc(nrows+1, 0, "rowptr");
|
|
rowind = mat->rowind = gk_i32malloc(nnz, "rowind");
|
|
if (readvals)
|
|
rowval = mat->rowval = gk_fmalloc(nnz, "rowval");
|
|
|
|
for (i=0; i<nnz; i++)
|
|
rowptr[iinds[i]]++;
|
|
MAKECSR(i, nrows, rowptr);
|
|
|
|
for (i=0; i<nnz; i++) {
|
|
rowind[rowptr[iinds[i]]] = jinds[i];
|
|
if (readvals)
|
|
rowval[rowptr[iinds[i]]] = vals[i];
|
|
rowptr[iinds[i]]++;
|
|
}
|
|
SHIFTCSR(i, nrows, rowptr);
|
|
|
|
gk_free((void **)&iinds, &jinds, &vals, LTERM);
|
|
|
|
return mat;
|
|
|
|
break;
|
|
|
|
case GK_CSR_FMT_BIJV:
|
|
mat = gk_csr_Create();
|
|
|
|
fpin = gk_fopen(filename, "rb", "gk_csr_Read: fpin");
|
|
|
|
if (fread(&(mat->nrows), sizeof(int32_t), 1, fpin) != 1)
|
|
gk_errexit(SIGERR, "Failed to read the nrows from file %s!\n", filename);
|
|
if (fread(&(mat->ncols), sizeof(int32_t), 1, fpin) != 1)
|
|
gk_errexit(SIGERR, "Failed to read the ncols from file %s!\n", filename);
|
|
if (fread(&nnz, sizeof(size_t), 1, fpin) != 1)
|
|
gk_errexit(SIGERR, "Failed to read the nnz from file %s!\n", filename);
|
|
if (fread(&readvals, sizeof(int32_t), 1, fpin) != 1)
|
|
gk_errexit(SIGERR, "Failed to read the readvals from file %s!\n", filename);
|
|
|
|
/* read the data into three arrays */
|
|
iinds = gk_i32malloc(nnz, "iinds");
|
|
jinds = gk_i32malloc(nnz, "jinds");
|
|
vals = (readvals ? gk_fmalloc(nnz, "vals") : NULL);
|
|
|
|
for (i=0; i<nnz; i++) {
|
|
if (fread(&(iinds[i]), sizeof(int32_t), 1, fpin) != 1)
|
|
gk_errexit(SIGERR, "Failed to read iinds[i] from file %s!\n", filename);
|
|
if (fread(&(jinds[i]), sizeof(int32_t), 1, fpin) != 1)
|
|
gk_errexit(SIGERR, "Failed to read jinds[i] from file %s!\n", filename);
|
|
if (readvals) {
|
|
if (fread(&(vals[i]), sizeof(float), 1, fpin) != 1)
|
|
gk_errexit(SIGERR, "Failed to read vals[i] from file %s!\n", filename);
|
|
}
|
|
//printf("%d %d\n", iinds[i], jinds[i]);
|
|
}
|
|
gk_fclose(fpin);
|
|
|
|
/* convert (i, j, v) into a CSR matrix */
|
|
rowptr = mat->rowptr = gk_zsmalloc(mat->nrows+1, 0, "rowptr");
|
|
rowind = mat->rowind = gk_i32malloc(nnz, "rowind");
|
|
if (readvals)
|
|
rowval = mat->rowval = gk_fmalloc(nnz, "rowval");
|
|
|
|
for (i=0; i<nnz; i++)
|
|
rowptr[iinds[i]]++;
|
|
MAKECSR(i, mat->nrows, rowptr);
|
|
|
|
for (i=0; i<nnz; i++) {
|
|
rowind[rowptr[iinds[i]]] = jinds[i];
|
|
if (readvals)
|
|
rowval[rowptr[iinds[i]]] = vals[i];
|
|
rowptr[iinds[i]]++;
|
|
}
|
|
SHIFTCSR(i, mat->nrows, rowptr);
|
|
|
|
gk_free((void **)&iinds, &jinds, &vals, LTERM);
|
|
|
|
return mat;
|
|
|
|
break;
|
|
|
|
|
|
/* the following are handled by a common input code, that comes after the switch */
|
|
|
|
case GK_CSR_FMT_CLUTO:
|
|
fpin = gk_fopen(filename, "r", "gk_csr_Read: fpin");
|
|
do {
|
|
if (gk_getline(&line, &lnlen, fpin) <= 0)
|
|
gk_errexit(SIGERR, "Premature end of input file: file:%s\n", filename);
|
|
} while (line[0] == '%');
|
|
|
|
if (sscanf(line, "%zu %zu %zu", &nrows, &ncols, &nnz) != 3)
|
|
gk_errexit(SIGERR, "Header line must contain 3 integers.\n");
|
|
|
|
readsizes = 0;
|
|
readwgts = 0;
|
|
readvals = 1;
|
|
numbering = 1;
|
|
|
|
break;
|
|
|
|
case GK_CSR_FMT_METIS:
|
|
fpin = gk_fopen(filename, "r", "gk_csr_Read: fpin");
|
|
do {
|
|
if (gk_getline(&line, &lnlen, fpin) <= 0)
|
|
gk_errexit(SIGERR, "Premature end of input file: file:%s\n", filename);
|
|
} while (line[0] == '%');
|
|
|
|
fmt = ncon = 0;
|
|
nfields = sscanf(line, "%zu %zu %zu %zu", &nrows, &nnz, &fmt, &ncon);
|
|
if (nfields < 2)
|
|
gk_errexit(SIGERR, "Header line must contain at least 2 integers (#vtxs and #edges).\n");
|
|
|
|
ncols = nrows;
|
|
nnz *= 2;
|
|
|
|
if (fmt > 111)
|
|
gk_errexit(SIGERR, "Cannot read this type of file format [fmt=%zu]!\n", fmt);
|
|
|
|
sprintf(fmtstr, "%03zu", fmt%1000);
|
|
readsizes = (fmtstr[0] == '1');
|
|
readwgts = (fmtstr[1] == '1');
|
|
readvals = (fmtstr[2] == '1');
|
|
numbering = 1;
|
|
ncon = (ncon == 0 ? 1 : ncon);
|
|
|
|
break;
|
|
|
|
case GK_CSR_FMT_CSR:
|
|
readsizes = 0;
|
|
readwgts = 0;
|
|
|
|
gk_getfilestats(filename, &nrows, &nnz, NULL, NULL);
|
|
|
|
if (readvals == 1 && nnz%2 == 1)
|
|
gk_errexit(SIGERR, "Error: The number of numbers (%zd %d) in the input file is not even.\n", nnz, readvals);
|
|
if (readvals == 1)
|
|
nnz = nnz/2;
|
|
fpin = gk_fopen(filename, "r", "gk_csr_Read: fpin");
|
|
|
|
break;
|
|
|
|
default:
|
|
gk_errexit(SIGERR, "Unknown csr format.\n");
|
|
return NULL;
|
|
}
|
|
|
|
mat = gk_csr_Create();
|
|
|
|
mat->nrows = nrows;
|
|
|
|
rowptr = mat->rowptr = gk_zmalloc(nrows+1, "gk_csr_Read: rowptr");
|
|
rowind = mat->rowind = gk_imalloc(nnz, "gk_csr_Read: rowind");
|
|
if (readvals != 2)
|
|
rowval = mat->rowval = gk_fsmalloc(nnz, 1.0, "gk_csr_Read: rowval");
|
|
|
|
if (readsizes)
|
|
mat->rsizes = gk_fsmalloc(nrows, 0.0, "gk_csr_Read: rsizes");
|
|
|
|
if (readwgts)
|
|
mat->rwgts = gk_fsmalloc(nrows*ncon, 0.0, "gk_csr_Read: rwgts");
|
|
|
|
/*----------------------------------------------------------------------
|
|
* Read the sparse matrix file
|
|
*---------------------------------------------------------------------*/
|
|
numbering = (numbering ? -1 : 0);
|
|
for (ncols=0, rowptr[0]=0, k=0, i=0; i<nrows; i++) {
|
|
do {
|
|
if (gk_getline(&line, &lnlen, fpin) == -1)
|
|
gk_errexit(SIGERR, "Premature end of input file: file while reading row %d\n", i);
|
|
} while (line[0] == '%');
|
|
|
|
head = line;
|
|
tail = NULL;
|
|
|
|
/* Read vertex sizes */
|
|
if (readsizes) {
|
|
#ifdef __MSC__
|
|
mat->rsizes[i] = (float)strtod(head, &tail);
|
|
#else
|
|
mat->rsizes[i] = strtof(head, &tail);
|
|
#endif
|
|
if (tail == head)
|
|
gk_errexit(SIGERR, "The line for vertex %zd does not have size information\n", i+1);
|
|
if (mat->rsizes[i] < 0)
|
|
errexit("The size for vertex %zd must be >= 0\n", i+1);
|
|
head = tail;
|
|
}
|
|
|
|
/* Read vertex weights */
|
|
if (readwgts) {
|
|
for (l=0; l<ncon; l++) {
|
|
#ifdef __MSC__
|
|
mat->rwgts[i*ncon+l] = (float)strtod(head, &tail);
|
|
#else
|
|
mat->rwgts[i*ncon+l] = strtof(head, &tail);
|
|
#endif
|
|
if (tail == head)
|
|
errexit("The line for vertex %zd does not have enough weights "
|
|
"for the %d constraints.\n", i+1, ncon);
|
|
if (mat->rwgts[i*ncon+l] < 0)
|
|
errexit("The weight vertex %zd and constraint %zd must be >= 0\n", i+1, l);
|
|
head = tail;
|
|
}
|
|
}
|
|
|
|
|
|
/* Read the rest of the row */
|
|
while (1) {
|
|
ival = (int)strtol(head, &tail, 0);
|
|
if (tail == head)
|
|
break;
|
|
head = tail;
|
|
|
|
if ((rowind[k] = ival + numbering) < 0)
|
|
gk_errexit(SIGERR, "Error: Invalid column number %d at row %zd.\n", ival, i);
|
|
|
|
ncols = gk_max(rowind[k], ncols);
|
|
|
|
if (readvals == 1) {
|
|
#ifdef __MSC__
|
|
fval = (float)strtod(head, &tail);
|
|
#else
|
|
fval = strtof(head, &tail);
|
|
#endif
|
|
if (tail == head)
|
|
gk_errexit(SIGERR, "Value could not be found for column! Row:%zd, NNZ:%zd\n", i, k);
|
|
head = tail;
|
|
|
|
rowval[k] = fval;
|
|
}
|
|
k++;
|
|
}
|
|
rowptr[i+1] = k;
|
|
}
|
|
|
|
if (format == GK_CSR_FMT_METIS) {
|
|
ASSERT(ncols+1 == mat->nrows);
|
|
mat->ncols = mat->nrows;
|
|
}
|
|
else {
|
|
mat->ncols = ncols+1;
|
|
}
|
|
|
|
if (k != nnz)
|
|
gk_errexit(SIGERR, "gk_csr_Read: Something wrong with the number of nonzeros in "
|
|
"the input file. NNZ=%zd, ActualNNZ=%zd.\n", nnz, k);
|
|
|
|
gk_fclose(fpin);
|
|
|
|
gk_free((void **)&line, LTERM);
|
|
|
|
return mat;
|
|
}
|
|
|
|
|
|
/**************************************************************************/
|
|
/*! Writes the row-based structure of a matrix into a file.
|
|
\param mat is the matrix to be written,
|
|
\param filename is the name of the output file.
|
|
\param format is one of: GK_CSR_FMT_CLUTO, GK_CSR_FMT_CSR,
|
|
GK_CSR_FMT_BINROW, GK_CSR_FMT_BINCOL, GK_CSR_FMT_BIJV.
|
|
\param writevals is either 1 or 0 indicating if the values will be
|
|
written or not. This is only applicable when GK_CSR_FMT_CSR
|
|
is used.
|
|
\param numbering is either 1 or 0 indicating if the internal 0-based
|
|
numbering will be shifted by one or not during output. This
|
|
is only applicable when GK_CSR_FMT_CSR is used.
|
|
*/
|
|
/**************************************************************************/
|
|
void gk_csr_Write(gk_csr_t *mat, char *filename, int format, int writevals, int numbering)
|
|
{
|
|
ssize_t i, j;
|
|
int32_t edge[2];
|
|
FILE *fpout;
|
|
|
|
format = gk_csr_DetermineFormat(filename, format);
|
|
|
|
switch (format) {
|
|
case GK_CSR_FMT_METIS:
|
|
if (mat->nrows != mat->ncols || mat->rowptr[mat->nrows]%2 == 1)
|
|
gk_errexit(SIGERR, "METIS output format requires a square symmetric matrix.\n");
|
|
|
|
if (filename)
|
|
fpout = gk_fopen(filename, "w", "gk_csr_Write: fpout");
|
|
else
|
|
fpout = stdout;
|
|
|
|
fprintf(fpout, "%d %zd\n", mat->nrows, mat->rowptr[mat->nrows]/2);
|
|
for (i=0; i<mat->nrows; i++) {
|
|
for (j=mat->rowptr[i]; j<mat->rowptr[i+1]; j++)
|
|
fprintf(fpout, " %d", mat->rowind[j]+1);
|
|
fprintf(fpout, "\n");
|
|
}
|
|
if (filename)
|
|
gk_fclose(fpout);
|
|
break;
|
|
|
|
case GK_CSR_FMT_BINROW:
|
|
if (filename == NULL)
|
|
gk_errexit(SIGERR, "The filename parameter cannot be NULL.\n");
|
|
fpout = gk_fopen(filename, "wb", "gk_csr_Write: fpout");
|
|
|
|
fwrite(&(mat->nrows), sizeof(int32_t), 1, fpout);
|
|
fwrite(&(mat->ncols), sizeof(int32_t), 1, fpout);
|
|
fwrite(mat->rowptr, sizeof(ssize_t), mat->nrows+1, fpout);
|
|
fwrite(mat->rowind, sizeof(int32_t), mat->rowptr[mat->nrows], fpout);
|
|
if (writevals)
|
|
fwrite(mat->rowval, sizeof(float), mat->rowptr[mat->nrows], fpout);
|
|
|
|
gk_fclose(fpout);
|
|
return;
|
|
|
|
break;
|
|
|
|
case GK_CSR_FMT_BINCOL:
|
|
if (filename == NULL)
|
|
gk_errexit(SIGERR, "The filename parameter cannot be NULL.\n");
|
|
fpout = gk_fopen(filename, "wb", "gk_csr_Write: fpout");
|
|
|
|
fwrite(&(mat->nrows), sizeof(int32_t), 1, fpout);
|
|
fwrite(&(mat->ncols), sizeof(int32_t), 1, fpout);
|
|
fwrite(mat->colptr, sizeof(ssize_t), mat->ncols+1, fpout);
|
|
fwrite(mat->colind, sizeof(int32_t), mat->colptr[mat->ncols], fpout);
|
|
if (writevals)
|
|
fwrite(mat->colval, sizeof(float), mat->colptr[mat->ncols], fpout);
|
|
|
|
gk_fclose(fpout);
|
|
return;
|
|
|
|
break;
|
|
|
|
case GK_CSR_FMT_IJV:
|
|
if (filename == NULL)
|
|
gk_errexit(SIGERR, "The filename parameter cannot be NULL.\n");
|
|
fpout = gk_fopen(filename, "w", "gk_csr_Write: fpout");
|
|
|
|
numbering = (numbering ? 1 : 0);
|
|
for (i=0; i<mat->nrows; i++) {
|
|
for (j=mat->rowptr[i]; j<mat->rowptr[i+1]; j++) {
|
|
if (writevals)
|
|
fprintf(fpout, "%zd %d %.8f\n", i+numbering, mat->rowind[j]+numbering, mat->rowval[j]);
|
|
else
|
|
fprintf(fpout, "%zd %d\n", i+numbering, mat->rowind[j]+numbering);
|
|
}
|
|
}
|
|
|
|
gk_fclose(fpout);
|
|
return;
|
|
|
|
break;
|
|
|
|
case GK_CSR_FMT_BIJV:
|
|
if (filename == NULL)
|
|
gk_errexit(SIGERR, "The filename parameter cannot be NULL.\n");
|
|
fpout = gk_fopen(filename, "wb", "gk_csr_Write: fpout");
|
|
|
|
fwrite(&(mat->nrows), sizeof(int32_t), 1, fpout);
|
|
fwrite(&(mat->ncols), sizeof(int32_t), 1, fpout);
|
|
fwrite(&(mat->rowptr[mat->nrows]), sizeof(size_t), 1, fpout);
|
|
fwrite(&writevals, sizeof(int32_t), 1, fpout);
|
|
|
|
for (i=0; i<mat->nrows; i++) {
|
|
edge[0] = i;
|
|
for (j=mat->rowptr[i]; j<mat->rowptr[i+1]; j++) {
|
|
edge[1] = mat->rowind[j];
|
|
fwrite(edge, sizeof(int32_t), 2, fpout);
|
|
if (writevals)
|
|
fwrite(&(mat->rowval[j]), sizeof(float), 1, fpout);
|
|
}
|
|
}
|
|
|
|
gk_fclose(fpout);
|
|
return;
|
|
|
|
break;
|
|
|
|
default:
|
|
if (filename)
|
|
fpout = gk_fopen(filename, "w", "gk_csr_Write: fpout");
|
|
else
|
|
fpout = stdout;
|
|
|
|
if (format == GK_CSR_FMT_CLUTO) {
|
|
fprintf(fpout, "%d %d %zd\n", mat->nrows, mat->ncols, mat->rowptr[mat->nrows]);
|
|
writevals = 1;
|
|
numbering = 1;
|
|
}
|
|
|
|
for (i=0; i<mat->nrows; i++) {
|
|
for (j=mat->rowptr[i]; j<mat->rowptr[i+1]; j++) {
|
|
fprintf(fpout, " %d", mat->rowind[j]+(numbering ? 1 : 0));
|
|
if (writevals)
|
|
fprintf(fpout, " %f", mat->rowval[j]);
|
|
}
|
|
fprintf(fpout, "\n");
|
|
}
|
|
if (filename)
|
|
gk_fclose(fpout);
|
|
}
|
|
}
|
|
|
|
|
|
/*************************************************************************/
|
|
/*! Prunes certain rows/columns of the matrix. The prunning takes place
|
|
by analyzing the row structure of the matrix. The prunning takes place
|
|
by removing rows/columns but it does not affect the numbering of the
|
|
remaining rows/columns.
|
|
|
|
\param mat the matrix to be prunned,
|
|
\param what indicates if the rows (GK_CSR_ROW) or the columns (GK_CSR_COL)
|
|
of the matrix will be prunned,
|
|
\param minf is the minimum number of rows (columns) that a column (row) must
|
|
be present in order to be kept,
|
|
\param maxf is the maximum number of rows (columns) that a column (row) must
|
|
be present at in order to be kept.
|
|
\returns the prunned matrix consisting only of its row-based structure.
|
|
The input matrix is not modified.
|
|
*/
|
|
/**************************************************************************/
|
|
gk_csr_t *gk_csr_Prune(gk_csr_t *mat, int what, int minf, int maxf)
|
|
{
|
|
ssize_t i, j, nnz;
|
|
int nrows, ncols;
|
|
ssize_t *rowptr, *nrowptr;
|
|
int *rowind, *nrowind, *collen;
|
|
float *rowval, *nrowval;
|
|
gk_csr_t *nmat;
|
|
|
|
nmat = gk_csr_Create();
|
|
|
|
nrows = nmat->nrows = mat->nrows;
|
|
ncols = nmat->ncols = mat->ncols;
|
|
|
|
rowptr = mat->rowptr;
|
|
rowind = mat->rowind;
|
|
rowval = mat->rowval;
|
|
|
|
nrowptr = nmat->rowptr = gk_zmalloc(nrows+1, "gk_csr_Prune: nrowptr");
|
|
nrowind = nmat->rowind = gk_imalloc(rowptr[nrows], "gk_csr_Prune: nrowind");
|
|
nrowval = nmat->rowval = gk_fmalloc(rowptr[nrows], "gk_csr_Prune: nrowval");
|
|
|
|
|
|
switch (what) {
|
|
case GK_CSR_COL:
|
|
collen = gk_ismalloc(ncols, 0, "gk_csr_Prune: collen");
|
|
|
|
for (i=0; i<nrows; i++) {
|
|
for (j=rowptr[i]; j<rowptr[i+1]; j++) {
|
|
ASSERT(rowind[j] < ncols);
|
|
collen[rowind[j]]++;
|
|
}
|
|
}
|
|
for (i=0; i<ncols; i++)
|
|
collen[i] = (collen[i] >= minf && collen[i] <= maxf ? 1 : 0);
|
|
|
|
nrowptr[0] = 0;
|
|
for (nnz=0, i=0; i<nrows; i++) {
|
|
for (j=rowptr[i]; j<rowptr[i+1]; j++) {
|
|
if (collen[rowind[j]]) {
|
|
nrowind[nnz] = rowind[j];
|
|
nrowval[nnz] = rowval[j];
|
|
nnz++;
|
|
}
|
|
}
|
|
nrowptr[i+1] = nnz;
|
|
}
|
|
gk_free((void **)&collen, LTERM);
|
|
break;
|
|
|
|
case GK_CSR_ROW:
|
|
nrowptr[0] = 0;
|
|
for (nnz=0, i=0; i<nrows; i++) {
|
|
if (rowptr[i+1]-rowptr[i] >= minf && rowptr[i+1]-rowptr[i] <= maxf) {
|
|
for (j=rowptr[i]; j<rowptr[i+1]; j++, nnz++) {
|
|
nrowind[nnz] = rowind[j];
|
|
nrowval[nnz] = rowval[j];
|
|
}
|
|
}
|
|
nrowptr[i+1] = nnz;
|
|
}
|
|
break;
|
|
|
|
default:
|
|
gk_csr_Free(&nmat);
|
|
gk_errexit(SIGERR, "Unknown prunning type of %d\n", what);
|
|
return NULL;
|
|
}
|
|
|
|
return nmat;
|
|
}
|
|
|
|
|
|
/*************************************************************************/
|
|
/*! Eliminates certain entries from the rows/columns of the matrix. The
|
|
filtering takes place by keeping only the highest weight entries whose
|
|
sum accounts for a certain fraction of the overall weight of the
|
|
row/column.
|
|
|
|
\param mat the matrix to be prunned,
|
|
\param what indicates if the rows (GK_CSR_ROW) or the columns (GK_CSR_COL)
|
|
of the matrix will be prunned,
|
|
\param norm indicates the norm that will be used to aggregate the weights
|
|
and possible values are 1 or 2,
|
|
\param fraction is the fraction of the overall norm that will be retained
|
|
by the kept entries.
|
|
\returns the filtered matrix consisting only of its row-based structure.
|
|
The input matrix is not modified.
|
|
*/
|
|
/**************************************************************************/
|
|
gk_csr_t *gk_csr_LowFilter(gk_csr_t *mat, int what, int norm, float fraction)
|
|
{
|
|
ssize_t i, j, nnz;
|
|
int nrows, ncols, ncand, maxlen=0;
|
|
ssize_t *rowptr, *colptr, *nrowptr;
|
|
int *rowind, *colind, *nrowind;
|
|
float *rowval, *colval, *nrowval, rsum, tsum;
|
|
gk_csr_t *nmat;
|
|
gk_fkv_t *cand;
|
|
|
|
nmat = gk_csr_Create();
|
|
|
|
nrows = nmat->nrows = mat->nrows;
|
|
ncols = nmat->ncols = mat->ncols;
|
|
|
|
rowptr = mat->rowptr;
|
|
rowind = mat->rowind;
|
|
rowval = mat->rowval;
|
|
colptr = mat->colptr;
|
|
colind = mat->colind;
|
|
colval = mat->colval;
|
|
|
|
nrowptr = nmat->rowptr = gk_zmalloc(nrows+1, "gk_csr_LowFilter: nrowptr");
|
|
nrowind = nmat->rowind = gk_imalloc(rowptr[nrows], "gk_csr_LowFilter: nrowind");
|
|
nrowval = nmat->rowval = gk_fmalloc(rowptr[nrows], "gk_csr_LowFilter: nrowval");
|
|
|
|
|
|
switch (what) {
|
|
case GK_CSR_COL:
|
|
if (mat->colptr == NULL)
|
|
gk_errexit(SIGERR, "Cannot filter columns when column-based structure has not been created.\n");
|
|
|
|
gk_zcopy(nrows+1, rowptr, nrowptr);
|
|
|
|
for (i=0; i<ncols; i++)
|
|
maxlen = gk_max(maxlen, colptr[i+1]-colptr[i]);
|
|
|
|
#pragma omp parallel private(i, j, ncand, rsum, tsum, cand)
|
|
{
|
|
cand = gk_fkvmalloc(maxlen, "gk_csr_LowFilter: cand");
|
|
|
|
#pragma omp for schedule(static)
|
|
for (i=0; i<ncols; i++) {
|
|
for (tsum=0.0, ncand=0, j=colptr[i]; j<colptr[i+1]; j++, ncand++) {
|
|
cand[ncand].val = colind[j];
|
|
cand[ncand].key = colval[j];
|
|
tsum += (norm == 1 ? colval[j] : colval[j]*colval[j]);
|
|
}
|
|
gk_fkvsortd(ncand, cand);
|
|
|
|
for (rsum=0.0, j=0; j<ncand && rsum<=fraction*tsum; j++) {
|
|
rsum += (norm == 1 ? cand[j].key : cand[j].key*cand[j].key);
|
|
nrowind[nrowptr[cand[j].val]] = i;
|
|
nrowval[nrowptr[cand[j].val]] = cand[j].key;
|
|
nrowptr[cand[j].val]++;
|
|
}
|
|
}
|
|
|
|
gk_free((void **)&cand, LTERM);
|
|
}
|
|
|
|
/* compact the nrowind/nrowval */
|
|
for (nnz=0, i=0; i<nrows; i++) {
|
|
for (j=rowptr[i]; j<nrowptr[i]; j++, nnz++) {
|
|
nrowind[nnz] = nrowind[j];
|
|
nrowval[nnz] = nrowval[j];
|
|
}
|
|
nrowptr[i] = nnz;
|
|
}
|
|
SHIFTCSR(i, nrows, nrowptr);
|
|
|
|
break;
|
|
|
|
case GK_CSR_ROW:
|
|
if (mat->rowptr == NULL)
|
|
gk_errexit(SIGERR, "Cannot filter rows when row-based structure has not been created.\n");
|
|
|
|
for (i=0; i<nrows; i++)
|
|
maxlen = gk_max(maxlen, rowptr[i+1]-rowptr[i]);
|
|
|
|
#pragma omp parallel private(i, j, ncand, rsum, tsum, cand)
|
|
{
|
|
cand = gk_fkvmalloc(maxlen, "gk_csr_LowFilter: cand");
|
|
|
|
#pragma omp for schedule(static)
|
|
for (i=0; i<nrows; i++) {
|
|
for (tsum=0.0, ncand=0, j=rowptr[i]; j<rowptr[i+1]; j++, ncand++) {
|
|
cand[ncand].val = rowind[j];
|
|
cand[ncand].key = rowval[j];
|
|
tsum += (norm == 1 ? rowval[j] : rowval[j]*rowval[j]);
|
|
}
|
|
gk_fkvsortd(ncand, cand);
|
|
|
|
for (rsum=0.0, j=0; j<ncand && rsum<=fraction*tsum; j++) {
|
|
rsum += (norm == 1 ? cand[j].key : cand[j].key*cand[j].key);
|
|
nrowind[rowptr[i]+j] = cand[j].val;
|
|
nrowval[rowptr[i]+j] = cand[j].key;
|
|
}
|
|
nrowptr[i+1] = rowptr[i]+j;
|
|
}
|
|
|
|
gk_free((void **)&cand, LTERM);
|
|
}
|
|
|
|
/* compact nrowind/nrowval */
|
|
nrowptr[0] = nnz = 0;
|
|
for (i=0; i<nrows; i++) {
|
|
for (j=rowptr[i]; j<nrowptr[i+1]; j++, nnz++) {
|
|
nrowind[nnz] = nrowind[j];
|
|
nrowval[nnz] = nrowval[j];
|
|
}
|
|
nrowptr[i+1] = nnz;
|
|
}
|
|
|
|
break;
|
|
|
|
default:
|
|
gk_csr_Free(&nmat);
|
|
gk_errexit(SIGERR, "Unknown prunning type of %d\n", what);
|
|
return NULL;
|
|
}
|
|
|
|
return nmat;
|
|
}
|
|
|
|
|
|
/*************************************************************************/
|
|
/*! Eliminates certain entries from the rows/columns of the matrix. The
|
|
filtering takes place by keeping only the highest weight top-K entries
|
|
along each row/column and those entries whose weight is greater than
|
|
a specified value.
|
|
|
|
\param mat the matrix to be prunned,
|
|
\param what indicates if the rows (GK_CSR_ROW) or the columns (GK_CSR_COL)
|
|
of the matrix will be prunned,
|
|
\param topk is the number of the highest weight entries to keep.
|
|
\param keepval is the weight of a term above which will be kept. This
|
|
is used to select additional terms past the first topk.
|
|
\returns the filtered matrix consisting only of its row-based structure.
|
|
The input matrix is not modified.
|
|
*/
|
|
/**************************************************************************/
|
|
gk_csr_t *gk_csr_TopKPlusFilter(gk_csr_t *mat, int what, int topk, float keepval)
|
|
{
|
|
ssize_t i, j, k, nnz;
|
|
int nrows, ncols, ncand;
|
|
ssize_t *rowptr, *colptr, *nrowptr;
|
|
int *rowind, *colind, *nrowind;
|
|
float *rowval, *colval, *nrowval;
|
|
gk_csr_t *nmat;
|
|
gk_fkv_t *cand;
|
|
|
|
nmat = gk_csr_Create();
|
|
|
|
nrows = nmat->nrows = mat->nrows;
|
|
ncols = nmat->ncols = mat->ncols;
|
|
|
|
rowptr = mat->rowptr;
|
|
rowind = mat->rowind;
|
|
rowval = mat->rowval;
|
|
colptr = mat->colptr;
|
|
colind = mat->colind;
|
|
colval = mat->colval;
|
|
|
|
nrowptr = nmat->rowptr = gk_zmalloc(nrows+1, "gk_csr_LowFilter: nrowptr");
|
|
nrowind = nmat->rowind = gk_imalloc(rowptr[nrows], "gk_csr_LowFilter: nrowind");
|
|
nrowval = nmat->rowval = gk_fmalloc(rowptr[nrows], "gk_csr_LowFilter: nrowval");
|
|
|
|
|
|
switch (what) {
|
|
case GK_CSR_COL:
|
|
if (mat->colptr == NULL)
|
|
gk_errexit(SIGERR, "Cannot filter columns when column-based structure has not been created.\n");
|
|
|
|
cand = gk_fkvmalloc(nrows, "gk_csr_LowFilter: cand");
|
|
|
|
gk_zcopy(nrows+1, rowptr, nrowptr);
|
|
for (i=0; i<ncols; i++) {
|
|
for (ncand=0, j=colptr[i]; j<colptr[i+1]; j++, ncand++) {
|
|
cand[ncand].val = colind[j];
|
|
cand[ncand].key = colval[j];
|
|
}
|
|
gk_fkvsortd(ncand, cand);
|
|
|
|
k = gk_min(topk, ncand);
|
|
for (j=0; j<k; j++) {
|
|
nrowind[nrowptr[cand[j].val]] = i;
|
|
nrowval[nrowptr[cand[j].val]] = cand[j].key;
|
|
nrowptr[cand[j].val]++;
|
|
}
|
|
for (; j<ncand; j++) {
|
|
if (cand[j].key < keepval)
|
|
break;
|
|
|
|
nrowind[nrowptr[cand[j].val]] = i;
|
|
nrowval[nrowptr[cand[j].val]] = cand[j].key;
|
|
nrowptr[cand[j].val]++;
|
|
}
|
|
}
|
|
|
|
/* compact the nrowind/nrowval */
|
|
for (nnz=0, i=0; i<nrows; i++) {
|
|
for (j=rowptr[i]; j<nrowptr[i]; j++, nnz++) {
|
|
nrowind[nnz] = nrowind[j];
|
|
nrowval[nnz] = nrowval[j];
|
|
}
|
|
nrowptr[i] = nnz;
|
|
}
|
|
SHIFTCSR(i, nrows, nrowptr);
|
|
|
|
gk_free((void **)&cand, LTERM);
|
|
break;
|
|
|
|
case GK_CSR_ROW:
|
|
if (mat->rowptr == NULL)
|
|
gk_errexit(SIGERR, "Cannot filter rows when row-based structure has not been created.\n");
|
|
|
|
cand = gk_fkvmalloc(ncols, "gk_csr_LowFilter: cand");
|
|
|
|
nrowptr[0] = 0;
|
|
for (nnz=0, i=0; i<nrows; i++) {
|
|
for (ncand=0, j=rowptr[i]; j<rowptr[i+1]; j++, ncand++) {
|
|
cand[ncand].val = rowind[j];
|
|
cand[ncand].key = rowval[j];
|
|
}
|
|
gk_fkvsortd(ncand, cand);
|
|
|
|
k = gk_min(topk, ncand);
|
|
for (j=0; j<k; j++, nnz++) {
|
|
nrowind[nnz] = cand[j].val;
|
|
nrowval[nnz] = cand[j].key;
|
|
}
|
|
for (; j<ncand; j++, nnz++) {
|
|
if (cand[j].key < keepval)
|
|
break;
|
|
|
|
nrowind[nnz] = cand[j].val;
|
|
nrowval[nnz] = cand[j].key;
|
|
}
|
|
nrowptr[i+1] = nnz;
|
|
}
|
|
|
|
gk_free((void **)&cand, LTERM);
|
|
break;
|
|
|
|
default:
|
|
gk_csr_Free(&nmat);
|
|
gk_errexit(SIGERR, "Unknown prunning type of %d\n", what);
|
|
return NULL;
|
|
}
|
|
|
|
return nmat;
|
|
}
|
|
|
|
|
|
/*************************************************************************/
|
|
/*! Eliminates certain entries from the rows/columns of the matrix. The
|
|
filtering takes place by keeping only the terms whose contribution to
|
|
the total length of the document is greater than a user-splied multiple
|
|
over the average.
|
|
|
|
This routine assumes that the vectors are normalized to be unit length.
|
|
|
|
\param mat the matrix to be prunned,
|
|
\param what indicates if the rows (GK_CSR_ROW) or the columns (GK_CSR_COL)
|
|
of the matrix will be prunned,
|
|
\param zscore is the multiplicative factor over the average contribution
|
|
to the length of the document.
|
|
\returns the filtered matrix consisting only of its row-based structure.
|
|
The input matrix is not modified.
|
|
*/
|
|
/**************************************************************************/
|
|
gk_csr_t *gk_csr_ZScoreFilter(gk_csr_t *mat, int what, float zscore)
|
|
{
|
|
ssize_t i, j, nnz;
|
|
int nrows;
|
|
ssize_t *rowptr, *nrowptr;
|
|
int *rowind, *nrowind;
|
|
float *rowval, *nrowval, avgwgt;
|
|
gk_csr_t *nmat;
|
|
|
|
nmat = gk_csr_Create();
|
|
|
|
nmat->nrows = mat->nrows;
|
|
nmat->ncols = mat->ncols;
|
|
|
|
nrows = mat->nrows;
|
|
rowptr = mat->rowptr;
|
|
rowind = mat->rowind;
|
|
rowval = mat->rowval;
|
|
|
|
nrowptr = nmat->rowptr = gk_zmalloc(nrows+1, "gk_csr_ZScoreFilter: nrowptr");
|
|
nrowind = nmat->rowind = gk_imalloc(rowptr[nrows], "gk_csr_ZScoreFilter: nrowind");
|
|
nrowval = nmat->rowval = gk_fmalloc(rowptr[nrows], "gk_csr_ZScoreFilter: nrowval");
|
|
|
|
|
|
switch (what) {
|
|
case GK_CSR_COL:
|
|
gk_errexit(SIGERR, "This has not been implemented yet.\n");
|
|
break;
|
|
|
|
case GK_CSR_ROW:
|
|
if (mat->rowptr == NULL)
|
|
gk_errexit(SIGERR, "Cannot filter rows when row-based structure has not been created.\n");
|
|
|
|
nrowptr[0] = 0;
|
|
for (nnz=0, i=0; i<nrows; i++) {
|
|
avgwgt = zscore/(rowptr[i+1]-rowptr[i]);
|
|
for (j=rowptr[i]; j<rowptr[i+1]; j++) {
|
|
if (rowval[j] > avgwgt) {
|
|
nrowind[nnz] = rowind[j];
|
|
nrowval[nnz] = rowval[j];
|
|
nnz++;
|
|
}
|
|
}
|
|
nrowptr[i+1] = nnz;
|
|
}
|
|
break;
|
|
|
|
default:
|
|
gk_csr_Free(&nmat);
|
|
gk_errexit(SIGERR, "Unknown prunning type of %d\n", what);
|
|
return NULL;
|
|
}
|
|
|
|
return nmat;
|
|
}
|
|
|
|
|
|
/*************************************************************************/
|
|
/*! Compacts the column-space of the matrix by removing empty columns.
|
|
As a result of the compaction, the column numbers are renumbered.
|
|
The compaction operation is done in place and only affects the row-based
|
|
representation of the matrix.
|
|
The new columns are ordered in decreasing frequency.
|
|
|
|
\param mat the matrix whose empty columns will be removed.
|
|
*/
|
|
/**************************************************************************/
|
|
void gk_csr_CompactColumns(gk_csr_t *mat)
|
|
{
|
|
ssize_t i;
|
|
int nrows, ncols, nncols;
|
|
ssize_t *rowptr;
|
|
int *rowind, *colmap;
|
|
gk_ikv_t *clens;
|
|
|
|
nrows = mat->nrows;
|
|
ncols = mat->ncols;
|
|
rowptr = mat->rowptr;
|
|
rowind = mat->rowind;
|
|
|
|
colmap = gk_imalloc(ncols, "gk_csr_CompactColumns: colmap");
|
|
|
|
clens = gk_ikvmalloc(ncols, "gk_csr_CompactColumns: clens");
|
|
for (i=0; i<ncols; i++) {
|
|
clens[i].key = 0;
|
|
clens[i].val = i;
|
|
}
|
|
|
|
for (i=0; i<rowptr[nrows]; i++)
|
|
clens[rowind[i]].key++;
|
|
gk_ikvsortd(ncols, clens);
|
|
|
|
for (nncols=0, i=0; i<ncols; i++) {
|
|
if (clens[i].key > 0)
|
|
colmap[clens[i].val] = nncols++;
|
|
else
|
|
break;
|
|
}
|
|
|
|
for (i=0; i<rowptr[nrows]; i++)
|
|
rowind[i] = colmap[rowind[i]];
|
|
|
|
mat->ncols = nncols;
|
|
|
|
gk_free((void **)&colmap, &clens, LTERM);
|
|
}
|
|
|
|
|
|
/*************************************************************************/
|
|
/*! Sorts the indices in increasing order
|
|
\param mat the matrix itself,
|
|
\param what is either GK_CSR_ROW or GK_CSR_COL indicating which set of
|
|
indices to sort.
|
|
*/
|
|
/**************************************************************************/
|
|
void gk_csr_SortIndices(gk_csr_t *mat, int what)
|
|
{
|
|
int n, nn=0;
|
|
ssize_t *ptr;
|
|
int *ind;
|
|
float *val;
|
|
|
|
switch (what) {
|
|
case GK_CSR_ROW:
|
|
if (!mat->rowptr)
|
|
gk_errexit(SIGERR, "Row-based view of the matrix does not exists.\n");
|
|
|
|
n = mat->nrows;
|
|
ptr = mat->rowptr;
|
|
ind = mat->rowind;
|
|
val = mat->rowval;
|
|
break;
|
|
|
|
case GK_CSR_COL:
|
|
if (!mat->colptr)
|
|
gk_errexit(SIGERR, "Column-based view of the matrix does not exists.\n");
|
|
|
|
n = mat->ncols;
|
|
ptr = mat->colptr;
|
|
ind = mat->colind;
|
|
val = mat->colval;
|
|
break;
|
|
|
|
default:
|
|
gk_errexit(SIGERR, "Invalid index type of %d.\n", what);
|
|
return;
|
|
}
|
|
|
|
#pragma omp parallel if (n > 100)
|
|
{
|
|
ssize_t i, j, k;
|
|
gk_ikv_t *cand;
|
|
float *tval;
|
|
|
|
#pragma omp single
|
|
for (i=0; i<n; i++)
|
|
nn = gk_max(nn, ptr[i+1]-ptr[i]);
|
|
|
|
cand = gk_ikvmalloc(nn, "gk_csr_SortIndices: cand");
|
|
tval = gk_fmalloc(nn, "gk_csr_SortIndices: tval");
|
|
|
|
#pragma omp for schedule(static)
|
|
for (i=0; i<n; i++) {
|
|
for (k=0, j=ptr[i]; j<ptr[i+1]; j++) {
|
|
if (j > ptr[i] && ind[j] < ind[j-1])
|
|
k = 1; /* an inversion */
|
|
cand[j-ptr[i]].val = j-ptr[i];
|
|
cand[j-ptr[i]].key = ind[j];
|
|
tval[j-ptr[i]] = val[j];
|
|
}
|
|
if (k) {
|
|
gk_ikvsorti(ptr[i+1]-ptr[i], cand);
|
|
for (j=ptr[i]; j<ptr[i+1]; j++) {
|
|
ind[j] = cand[j-ptr[i]].key;
|
|
val[j] = tval[cand[j-ptr[i]].val];
|
|
}
|
|
}
|
|
}
|
|
|
|
gk_free((void **)&cand, &tval, LTERM);
|
|
}
|
|
|
|
}
|
|
|
|
|
|
/*************************************************************************/
|
|
/*! Creates a row/column index from the column/row data.
|
|
\param mat the matrix itself,
|
|
\param what is either GK_CSR_ROW or GK_CSR_COL indicating which index
|
|
will be created.
|
|
*/
|
|
/**************************************************************************/
|
|
void gk_csr_CreateIndex(gk_csr_t *mat, int what)
|
|
{
|
|
/* 'f' stands for forward, 'r' stands for reverse */
|
|
ssize_t i, j, k, nf, nr;
|
|
ssize_t *fptr, *rptr;
|
|
int *find, *rind;
|
|
float *fval, *rval;
|
|
|
|
switch (what) {
|
|
case GK_CSR_COL:
|
|
nf = mat->nrows;
|
|
fptr = mat->rowptr;
|
|
find = mat->rowind;
|
|
fval = mat->rowval;
|
|
|
|
if (mat->colptr) gk_free((void **)&mat->colptr, LTERM);
|
|
if (mat->colind) gk_free((void **)&mat->colind, LTERM);
|
|
if (mat->colval) gk_free((void **)&mat->colval, LTERM);
|
|
|
|
nr = mat->ncols;
|
|
rptr = mat->colptr = gk_zsmalloc(nr+1, 0, "gk_csr_CreateIndex: rptr");
|
|
rind = mat->colind = gk_imalloc(fptr[nf], "gk_csr_CreateIndex: rind");
|
|
rval = mat->colval = (fval ? gk_fmalloc(fptr[nf], "gk_csr_CreateIndex: rval") : NULL);
|
|
break;
|
|
case GK_CSR_ROW:
|
|
nf = mat->ncols;
|
|
fptr = mat->colptr;
|
|
find = mat->colind;
|
|
fval = mat->colval;
|
|
|
|
if (mat->rowptr) gk_free((void **)&mat->rowptr, LTERM);
|
|
if (mat->rowind) gk_free((void **)&mat->rowind, LTERM);
|
|
if (mat->rowval) gk_free((void **)&mat->rowval, LTERM);
|
|
|
|
nr = mat->nrows;
|
|
rptr = mat->rowptr = gk_zsmalloc(nr+1, 0, "gk_csr_CreateIndex: rptr");
|
|
rind = mat->rowind = gk_imalloc(fptr[nf], "gk_csr_CreateIndex: rind");
|
|
rval = mat->rowval = (fval ? gk_fmalloc(fptr[nf], "gk_csr_CreateIndex: rval") : NULL);
|
|
break;
|
|
default:
|
|
gk_errexit(SIGERR, "Invalid index type of %d.\n", what);
|
|
return;
|
|
}
|
|
|
|
|
|
for (i=0; i<nf; i++) {
|
|
for (j=fptr[i]; j<fptr[i+1]; j++)
|
|
rptr[find[j]]++;
|
|
}
|
|
MAKECSR(i, nr, rptr);
|
|
|
|
if (rptr[nr] > 6*nr) {
|
|
for (i=0; i<nf; i++) {
|
|
for (j=fptr[i]; j<fptr[i+1]; j++)
|
|
rind[rptr[find[j]]++] = i;
|
|
}
|
|
SHIFTCSR(i, nr, rptr);
|
|
|
|
if (fval) {
|
|
for (i=0; i<nf; i++) {
|
|
for (j=fptr[i]; j<fptr[i+1]; j++)
|
|
rval[rptr[find[j]]++] = fval[j];
|
|
}
|
|
SHIFTCSR(i, nr, rptr);
|
|
}
|
|
}
|
|
else {
|
|
if (fval) {
|
|
for (i=0; i<nf; i++) {
|
|
for (j=fptr[i]; j<fptr[i+1]; j++) {
|
|
k = find[j];
|
|
rind[rptr[k]] = i;
|
|
rval[rptr[k]++] = fval[j];
|
|
}
|
|
}
|
|
}
|
|
else {
|
|
for (i=0; i<nf; i++) {
|
|
for (j=fptr[i]; j<fptr[i+1]; j++)
|
|
rind[rptr[find[j]]++] = i;
|
|
}
|
|
}
|
|
SHIFTCSR(i, nr, rptr);
|
|
}
|
|
}
|
|
|
|
|
|
/*************************************************************************/
|
|
/*! Normalizes the rows/columns of the matrix to be unit
|
|
length.
|
|
\param mat the matrix itself,
|
|
\param what indicates what will be normalized and is obtained by
|
|
specifying GK_CSR_ROW, GK_CSR_COL, GK_CSR_ROW|GK_CSR_COL.
|
|
\param norm indicates what norm is to normalize to, 1: 1-norm, 2: 2-norm
|
|
*/
|
|
/**************************************************************************/
|
|
void gk_csr_Normalize(gk_csr_t *mat, int what, int norm)
|
|
{
|
|
ssize_t i, j;
|
|
int n;
|
|
ssize_t *ptr;
|
|
float *val, sum;
|
|
|
|
|
|
if (what&GK_CSR_ROW && mat->rowval) {
|
|
n = mat->nrows;
|
|
ptr = mat->rowptr;
|
|
val = mat->rowval;
|
|
|
|
#pragma omp parallel for if (ptr[n] > OMPMINOPS) private(j,sum) schedule(static)
|
|
for (i=0; i<n; i++) {
|
|
sum = 0.0;
|
|
if (norm == 1) {
|
|
for (j=ptr[i]; j<ptr[i+1]; j++)
|
|
sum += val[j]; /* assume val[j] > 0 */
|
|
if (sum > 0)
|
|
sum = 1.0/sum;
|
|
}
|
|
else if (norm == 2) {
|
|
for (j=ptr[i]; j<ptr[i+1]; j++)
|
|
sum += val[j]*val[j];
|
|
if (sum > 0)
|
|
sum = 1.0/sqrt(sum);
|
|
}
|
|
for (j=ptr[i]; j<ptr[i+1]; j++)
|
|
val[j] *= sum;
|
|
}
|
|
}
|
|
|
|
if (what&GK_CSR_COL && mat->colval) {
|
|
n = mat->ncols;
|
|
ptr = mat->colptr;
|
|
val = mat->colval;
|
|
|
|
#pragma omp parallel for if (ptr[n] > OMPMINOPS) private(j,sum) schedule(static)
|
|
for (i=0; i<n; i++) {
|
|
sum = 0.0;
|
|
if (norm == 1) {
|
|
for (j=ptr[i]; j<ptr[i+1]; j++)
|
|
sum += val[j]; /* assume val[j] > 0 */
|
|
if (sum > 0)
|
|
sum = 1.0/sum;
|
|
}
|
|
else if (norm == 2) {
|
|
for (j=ptr[i]; j<ptr[i+1]; j++)
|
|
sum += val[j]*val[j];
|
|
if (sum > 0)
|
|
sum = 1.0/sqrt(sum);
|
|
}
|
|
for (j=ptr[i]; j<ptr[i+1]; j++)
|
|
val[j] *= sum;
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
|
|
/*************************************************************************/
|
|
/*! Applies different row scaling methods.
|
|
\param mat the matrix itself,
|
|
\param type indicates the type of row scaling. Possible values are:
|
|
GK_CSR_MAXTF, GK_CSR_SQRT, GK_CSR_LOG, GK_CSR_IDF, GK_CSR_MAXTF2.
|
|
*/
|
|
/**************************************************************************/
|
|
void gk_csr_Scale(gk_csr_t *mat, int type)
|
|
{
|
|
ssize_t i, j;
|
|
int nrows, ncols, nnzcols, bgfreq;
|
|
ssize_t *rowptr;
|
|
int *rowind, *collen;
|
|
float *rowval, *cscale, maxtf;
|
|
double logscale = 1.0/log(2.0);
|
|
|
|
nrows = mat->nrows;
|
|
rowptr = mat->rowptr;
|
|
rowind = mat->rowind;
|
|
rowval = mat->rowval;
|
|
|
|
switch (type) {
|
|
case GK_CSR_MAXTF: /* TF' = .5 + .5*TF/MAX(TF) */
|
|
#pragma omp parallel for if (rowptr[nrows] > OMPMINOPS) private(j, maxtf) schedule(static)
|
|
for (i=0; i<nrows; i++) {
|
|
maxtf = fabs(rowval[rowptr[i]]);
|
|
for (j=rowptr[i]; j<rowptr[i+1]; j++)
|
|
maxtf = (maxtf < fabs(rowval[j]) ? fabs(rowval[j]) : maxtf);
|
|
|
|
for (j=rowptr[i]; j<rowptr[i+1]; j++)
|
|
rowval[j] = .5 + .5*rowval[j]/maxtf;
|
|
}
|
|
break;
|
|
|
|
case GK_CSR_MAXTF2: /* TF' = .1 + .9*TF/MAX(TF) */
|
|
#pragma omp parallel for if (rowptr[nrows] > OMPMINOPS) private(j, maxtf) schedule(static)
|
|
for (i=0; i<nrows; i++) {
|
|
maxtf = fabs(rowval[rowptr[i]]);
|
|
for (j=rowptr[i]; j<rowptr[i+1]; j++)
|
|
maxtf = (maxtf < fabs(rowval[j]) ? fabs(rowval[j]) : maxtf);
|
|
|
|
for (j=rowptr[i]; j<rowptr[i+1]; j++)
|
|
rowval[j] = .1 + .9*rowval[j]/maxtf;
|
|
}
|
|
break;
|
|
|
|
case GK_CSR_SQRT: /* TF' = .1+SQRT(TF) */
|
|
#pragma omp parallel for if (rowptr[nrows] > OMPMINOPS) private(j) schedule(static)
|
|
for (i=0; i<nrows; i++) {
|
|
for (j=rowptr[i]; j<rowptr[i+1]; j++) {
|
|
if (rowval[j] != 0.0)
|
|
rowval[j] = .1+sign(rowval[j], sqrt(fabs(rowval[j])));
|
|
}
|
|
}
|
|
|
|
break;
|
|
|
|
case GK_CSR_POW25: /* TF' = .1+POW(TF,.25) */
|
|
#pragma omp parallel for if (rowptr[nrows] > OMPMINOPS) private(j) schedule(static)
|
|
for (i=0; i<nrows; i++) {
|
|
for (j=rowptr[i]; j<rowptr[i+1]; j++) {
|
|
if (rowval[j] != 0.0)
|
|
rowval[j] = .1+sign(rowval[j], sqrt(sqrt(fabs(rowval[j]))));
|
|
}
|
|
}
|
|
break;
|
|
|
|
case GK_CSR_POW65: /* TF' = .1+POW(TF,.65) */
|
|
#pragma omp parallel for if (rowptr[nrows] > OMPMINOPS) private(j) schedule(static)
|
|
for (i=0; i<nrows; i++) {
|
|
for (j=rowptr[i]; j<rowptr[i+1]; j++) {
|
|
if (rowval[j] != 0.0)
|
|
rowval[j] = .1+sign(rowval[j], powf(fabs(rowval[j]), .65));
|
|
}
|
|
}
|
|
break;
|
|
|
|
case GK_CSR_POW75: /* TF' = .1+POW(TF,.75) */
|
|
#pragma omp parallel for if (rowptr[nrows] > OMPMINOPS) private(j) schedule(static)
|
|
for (i=0; i<nrows; i++) {
|
|
for (j=rowptr[i]; j<rowptr[i+1]; j++) {
|
|
if (rowval[j] != 0.0)
|
|
rowval[j] = .1+sign(rowval[j], powf(fabs(rowval[j]), .75));
|
|
}
|
|
}
|
|
break;
|
|
|
|
case GK_CSR_POW85: /* TF' = .1+POW(TF,.85) */
|
|
#pragma omp parallel for if (rowptr[nrows] > OMPMINOPS) private(j) schedule(static)
|
|
for (i=0; i<nrows; i++) {
|
|
for (j=rowptr[i]; j<rowptr[i+1]; j++) {
|
|
if (rowval[j] != 0.0)
|
|
rowval[j] = .1+sign(rowval[j], powf(fabs(rowval[j]), .85));
|
|
}
|
|
}
|
|
break;
|
|
|
|
case GK_CSR_LOG: /* TF' = 1+log_2(TF) */
|
|
#pragma omp parallel for if (rowptr[nrows] > OMPMINOPS) schedule(static,32)
|
|
for (i=0; i<rowptr[nrows]; i++) {
|
|
if (rowval[i] != 0.0)
|
|
rowval[i] = 1+(rowval[i]>0.0 ? log(rowval[i]) : -log(-rowval[i]))*logscale;
|
|
}
|
|
#ifdef XXX
|
|
#pragma omp parallel for private(j) schedule(static)
|
|
for (i=0; i<nrows; i++) {
|
|
for (j=rowptr[i]; j<rowptr[i+1]; j++) {
|
|
if (rowval[j] != 0.0)
|
|
rowval[j] = 1+(rowval[j]>0.0 ? log(rowval[j]) : -log(-rowval[j]))*logscale;
|
|
//rowval[j] = 1+sign(rowval[j], log(fabs(rowval[j]))*logscale);
|
|
}
|
|
}
|
|
#endif
|
|
break;
|
|
|
|
case GK_CSR_IDF: /* TF' = TF*IDF */
|
|
ncols = mat->ncols;
|
|
cscale = gk_fmalloc(ncols, "gk_csr_Scale: cscale");
|
|
collen = gk_ismalloc(ncols, 0, "gk_csr_Scale: collen");
|
|
|
|
for (i=0; i<nrows; i++) {
|
|
for (j=rowptr[i]; j<rowptr[i+1]; j++)
|
|
collen[rowind[j]]++;
|
|
}
|
|
|
|
#pragma omp parallel for if (ncols > OMPMINOPS) schedule(static)
|
|
for (i=0; i<ncols; i++)
|
|
cscale[i] = (collen[i] > 0 ? log(1.0*nrows/collen[i]) : 0.0);
|
|
|
|
#pragma omp parallel for if (rowptr[nrows] > OMPMINOPS) private(j) schedule(static)
|
|
for (i=0; i<nrows; i++) {
|
|
for (j=rowptr[i]; j<rowptr[i+1]; j++)
|
|
rowval[j] *= cscale[rowind[j]];
|
|
}
|
|
|
|
gk_free((void **)&cscale, &collen, LTERM);
|
|
break;
|
|
|
|
case GK_CSR_IDF2: /* TF' = TF*IDF */
|
|
ncols = mat->ncols;
|
|
cscale = gk_fmalloc(ncols, "gk_csr_Scale: cscale");
|
|
collen = gk_ismalloc(ncols, 0, "gk_csr_Scale: collen");
|
|
|
|
for (i=0; i<nrows; i++) {
|
|
for (j=rowptr[i]; j<rowptr[i+1]; j++)
|
|
collen[rowind[j]]++;
|
|
}
|
|
|
|
nnzcols = 0;
|
|
#pragma omp parallel for if (ncols > OMPMINOPS) schedule(static) reduction(+:nnzcols)
|
|
for (i=0; i<ncols; i++)
|
|
nnzcols += (collen[i] > 0 ? 1 : 0);
|
|
|
|
bgfreq = gk_max(10, (ssize_t)(.5*rowptr[nrows]/nnzcols));
|
|
printf("nnz: %zd, nnzcols: %d, bgfreq: %d\n", rowptr[nrows], nnzcols, bgfreq);
|
|
|
|
#pragma omp parallel for if (ncols > OMPMINOPS) schedule(static)
|
|
for (i=0; i<ncols; i++)
|
|
cscale[i] = (collen[i] > 0 ? log(1.0*(nrows+2*bgfreq)/(bgfreq+collen[i])) : 0.0);
|
|
|
|
#pragma omp parallel for if (rowptr[nrows] > OMPMINOPS) private(j) schedule(static)
|
|
for (i=0; i<nrows; i++) {
|
|
for (j=rowptr[i]; j<rowptr[i+1]; j++)
|
|
rowval[j] *= cscale[rowind[j]];
|
|
}
|
|
|
|
gk_free((void **)&cscale, &collen, LTERM);
|
|
break;
|
|
|
|
default:
|
|
gk_errexit(SIGERR, "Unknown scaling type of %d\n", type);
|
|
}
|
|
}
|
|
|
|
|
|
/*************************************************************************/
|
|
/*! Computes the sums of the rows/columns
|
|
\param mat the matrix itself,
|
|
\param what is either GK_CSR_ROW or GK_CSR_COL indicating which
|
|
sums to compute.
|
|
*/
|
|
/**************************************************************************/
|
|
void gk_csr_ComputeSums(gk_csr_t *mat, int what)
|
|
{
|
|
ssize_t i;
|
|
int n;
|
|
ssize_t *ptr;
|
|
float *val, *sums;
|
|
|
|
switch (what) {
|
|
case GK_CSR_ROW:
|
|
n = mat->nrows;
|
|
ptr = mat->rowptr;
|
|
val = mat->rowval;
|
|
|
|
if (mat->rsums)
|
|
gk_free((void **)&mat->rsums, LTERM);
|
|
|
|
sums = mat->rsums = gk_fsmalloc(n, 0, "gk_csr_ComputeSums: sums");
|
|
break;
|
|
case GK_CSR_COL:
|
|
n = mat->ncols;
|
|
ptr = mat->colptr;
|
|
val = mat->colval;
|
|
|
|
if (mat->csums)
|
|
gk_free((void **)&mat->csums, LTERM);
|
|
|
|
sums = mat->csums = gk_fsmalloc(n, 0, "gk_csr_ComputeSums: sums");
|
|
break;
|
|
default:
|
|
gk_errexit(SIGERR, "Invalid sum type of %d.\n", what);
|
|
return;
|
|
}
|
|
|
|
if (val) {
|
|
#pragma omp parallel for if (ptr[n] > OMPMINOPS) schedule(static)
|
|
for (i=0; i<n; i++)
|
|
sums[i] = gk_fsum(ptr[i+1]-ptr[i], val+ptr[i], 1);
|
|
}
|
|
else {
|
|
#pragma omp parallel for if (ptr[n] > OMPMINOPS) schedule(static)
|
|
for (i=0; i<n; i++)
|
|
sums[i] = ptr[i+1]-ptr[i];
|
|
}
|
|
}
|
|
|
|
|
|
/*************************************************************************/
|
|
/*! Computes the norms of the rows/columns
|
|
|
|
\param mat the matrix itself,
|
|
\param what is either GK_CSR_ROW or GK_CSR_COL indicating which
|
|
squared norms to compute.
|
|
|
|
\note If the rowval/colval arrays are NULL, the matrix is assumed
|
|
to be binary and the norms are computed accordingly.
|
|
*/
|
|
/**************************************************************************/
|
|
void gk_csr_ComputeNorms(gk_csr_t *mat, int what)
|
|
{
|
|
ssize_t i;
|
|
int n;
|
|
ssize_t *ptr;
|
|
float *val, *norms;
|
|
|
|
switch (what) {
|
|
case GK_CSR_ROW:
|
|
n = mat->nrows;
|
|
ptr = mat->rowptr;
|
|
val = mat->rowval;
|
|
|
|
if (mat->rnorms) gk_free((void **)&mat->rnorms, LTERM);
|
|
|
|
norms = mat->rnorms = gk_fsmalloc(n, 0, "gk_csr_ComputeSums: norms");
|
|
break;
|
|
case GK_CSR_COL:
|
|
n = mat->ncols;
|
|
ptr = mat->colptr;
|
|
val = mat->colval;
|
|
|
|
if (mat->cnorms) gk_free((void **)&mat->cnorms, LTERM);
|
|
|
|
norms = mat->cnorms = gk_fsmalloc(n, 0, "gk_csr_ComputeSums: norms");
|
|
break;
|
|
default:
|
|
gk_errexit(SIGERR, "Invalid norm type of %d.\n", what);
|
|
return;
|
|
}
|
|
|
|
if (val) {
|
|
#pragma omp parallel for if (ptr[n] > OMPMINOPS) schedule(static)
|
|
for (i=0; i<n; i++)
|
|
norms[i] = sqrt(gk_fdot(ptr[i+1]-ptr[i], val+ptr[i], 1, val+ptr[i], 1));
|
|
}
|
|
else {
|
|
#pragma omp parallel for if (ptr[n] > OMPMINOPS) schedule(static)
|
|
for (i=0; i<n; i++)
|
|
norms[i] = sqrt(ptr[i+1]-ptr[i]);
|
|
}
|
|
}
|
|
|
|
|
|
/*************************************************************************/
|
|
/*! Computes the squared of the norms of the rows/columns
|
|
|
|
\param mat the matrix itself,
|
|
\param what is either GK_CSR_ROW or GK_CSR_COL indicating which
|
|
squared norms to compute.
|
|
|
|
\note If the rowval/colval arrays are NULL, the matrix is assumed
|
|
to be binary and the norms are computed accordingly.
|
|
*/
|
|
/**************************************************************************/
|
|
void gk_csr_ComputeSquaredNorms(gk_csr_t *mat, int what)
|
|
{
|
|
ssize_t i;
|
|
int n;
|
|
ssize_t *ptr;
|
|
float *val, *norms;
|
|
|
|
switch (what) {
|
|
case GK_CSR_ROW:
|
|
n = mat->nrows;
|
|
ptr = mat->rowptr;
|
|
val = mat->rowval;
|
|
|
|
if (mat->rnorms) gk_free((void **)&mat->rnorms, LTERM);
|
|
|
|
norms = mat->rnorms = gk_fsmalloc(n, 0, "gk_csr_ComputeSums: norms");
|
|
break;
|
|
case GK_CSR_COL:
|
|
n = mat->ncols;
|
|
ptr = mat->colptr;
|
|
val = mat->colval;
|
|
|
|
if (mat->cnorms) gk_free((void **)&mat->cnorms, LTERM);
|
|
|
|
norms = mat->cnorms = gk_fsmalloc(n, 0, "gk_csr_ComputeSums: norms");
|
|
break;
|
|
default:
|
|
gk_errexit(SIGERR, "Invalid norm type of %d.\n", what);
|
|
return;
|
|
}
|
|
|
|
if (val) {
|
|
#pragma omp parallel for if (ptr[n] > OMPMINOPS) schedule(static)
|
|
for (i=0; i<n; i++)
|
|
norms[i] = gk_fdot(ptr[i+1]-ptr[i], val+ptr[i], 1, val+ptr[i], 1);
|
|
}
|
|
else {
|
|
#pragma omp parallel for if (ptr[n] > OMPMINOPS) schedule(static)
|
|
for (i=0; i<n; i++)
|
|
norms[i] = ptr[i+1]-ptr[i];
|
|
}
|
|
}
|
|
|
|
|
|
/*************************************************************************/
|
|
/*! Returns a new matrix whose rows/columns are shuffled.
|
|
|
|
\param mat the matrix to be shuffled,
|
|
\param what indicates if the rows (GK_CSR_ROW), columns (GK_CSR_COL),
|
|
or both (GK_CSR_ROWCOL) will be shuffled,
|
|
\param symmetric indicates if the same shuffling will be applied to
|
|
both rows and columns. This is valid with nrows==ncols and
|
|
GK_CSR_ROWCOL was specified.
|
|
\returns the shuffled matrix.
|
|
The input matrix is not modified.
|
|
*/
|
|
/**************************************************************************/
|
|
gk_csr_t *gk_csr_Shuffle(gk_csr_t *mat, int what, int symmetric)
|
|
{
|
|
ssize_t i, j;
|
|
int nrows, ncols;
|
|
ssize_t *rowptr, *nrowptr;
|
|
int *rowind, *nrowind;
|
|
int *rperm, *cperm;
|
|
float *rowval, *nrowval;
|
|
gk_csr_t *nmat;
|
|
|
|
if (what == GK_CSR_ROWCOL && symmetric && mat->nrows != mat->ncols)
|
|
gk_errexit(SIGERR, "The matrix is not square for a symmetric rowcol shuffling.\n");
|
|
|
|
nrows = mat->nrows;
|
|
ncols = mat->ncols;
|
|
rowptr = mat->rowptr;
|
|
rowind = mat->rowind;
|
|
rowval = mat->rowval;
|
|
|
|
rperm = gk_imalloc(nrows, "gk_csr_Shuffle: rperm");
|
|
cperm = gk_imalloc(ncols, "gk_csr_Shuffle: cperm");
|
|
|
|
switch (what) {
|
|
case GK_CSR_ROW:
|
|
gk_RandomPermute(nrows, rperm, 1);
|
|
for (i=0; i<20; i++)
|
|
gk_RandomPermute(nrows, rperm, 0);
|
|
|
|
for (i=0; i<ncols; i++)
|
|
cperm[i] = i;
|
|
break;
|
|
|
|
case GK_CSR_COL:
|
|
gk_RandomPermute(ncols, cperm, 1);
|
|
for (i=0; i<20; i++)
|
|
gk_RandomPermute(ncols, cperm, 0);
|
|
|
|
for (i=0; i<nrows; i++)
|
|
rperm[i] = i;
|
|
break;
|
|
|
|
case GK_CSR_ROWCOL:
|
|
gk_RandomPermute(nrows, rperm, 1);
|
|
for (i=0; i<20; i++)
|
|
gk_RandomPermute(nrows, rperm, 0);
|
|
|
|
if (symmetric)
|
|
gk_icopy(nrows, rperm, cperm);
|
|
else {
|
|
gk_RandomPermute(ncols, cperm, 1);
|
|
for (i=0; i<20; i++)
|
|
gk_RandomPermute(ncols, cperm, 0);
|
|
}
|
|
break;
|
|
|
|
default:
|
|
gk_free((void **)&rperm, &cperm, LTERM);
|
|
gk_errexit(SIGERR, "Unknown shuffling type of %d\n", what);
|
|
return NULL;
|
|
}
|
|
|
|
nmat = gk_csr_Create();
|
|
nmat->nrows = nrows;
|
|
nmat->ncols = ncols;
|
|
|
|
nrowptr = nmat->rowptr = gk_zmalloc(nrows+1, "gk_csr_Shuffle: nrowptr");
|
|
nrowind = nmat->rowind = gk_imalloc(rowptr[nrows], "gk_csr_Shuffle: nrowind");
|
|
nrowval = nmat->rowval = (rowval ? gk_fmalloc(rowptr[nrows], "gk_csr_Shuffle: nrowval") : NULL) ;
|
|
|
|
for (i=0; i<nrows; i++)
|
|
nrowptr[rperm[i]] = rowptr[i+1]-rowptr[i];
|
|
MAKECSR(i, nrows, nrowptr);
|
|
|
|
for (i=0; i<nrows; i++) {
|
|
for (j=rowptr[i]; j<rowptr[i+1]; j++) {
|
|
nrowind[nrowptr[rperm[i]]] = cperm[rowind[j]];
|
|
if (nrowval)
|
|
nrowval[nrowptr[rperm[i]]] = rowval[j];
|
|
nrowptr[rperm[i]]++;
|
|
}
|
|
}
|
|
SHIFTCSR(i, nrows, nrowptr);
|
|
|
|
gk_free((void **)&rperm, &cperm, LTERM);
|
|
|
|
return nmat;
|
|
|
|
}
|
|
|
|
|
|
/*************************************************************************/
|
|
/*! Returns the transpose of the matrix.
|
|
|
|
\param mat the matrix to be transposed,
|
|
\returns the transposed matrix.
|
|
The input matrix is not modified.
|
|
*/
|
|
/**************************************************************************/
|
|
gk_csr_t *gk_csr_Transpose(gk_csr_t *mat)
|
|
{
|
|
int nrows, ncols;
|
|
ssize_t *colptr;
|
|
int32_t *colind;
|
|
float *colval;
|
|
gk_csr_t *nmat;
|
|
|
|
colptr = mat->colptr;
|
|
colind = mat->colind;
|
|
colval = mat->colval;
|
|
|
|
mat->colptr = NULL;
|
|
mat->colind = NULL;
|
|
mat->colval = NULL;
|
|
|
|
gk_csr_CreateIndex(mat, GK_CSR_COL);
|
|
|
|
nmat = gk_csr_Create();
|
|
nmat->nrows = mat->ncols;
|
|
nmat->ncols = mat->nrows;
|
|
nmat->rowptr = mat->colptr;
|
|
nmat->rowind = mat->colind;
|
|
nmat->rowval = mat->colval;
|
|
|
|
mat->colptr = colptr;
|
|
mat->colind = colind;
|
|
mat->colval = colval;
|
|
|
|
return nmat;
|
|
|
|
}
|
|
|
|
|
|
/*************************************************************************/
|
|
/*! Computes the similarity between two rows/columns
|
|
|
|
\param mat the matrix itself. The routine assumes that the indices
|
|
are sorted in increasing order.
|
|
\param i1 is the first row/column,
|
|
\param i2 is the second row/column,
|
|
\param what is either GK_CSR_ROW or GK_CSR_COL indicating the type of
|
|
objects between the similarity will be computed,
|
|
\param simtype is the type of similarity and is one of GK_CSR_COS,
|
|
GK_CSR_JAC, GK_CSR_MIN, GK_CSR_AMIN
|
|
\returns the similarity between the two rows/columns.
|
|
*/
|
|
/**************************************************************************/
|
|
float gk_csr_ComputeSimilarity(gk_csr_t *mat, int i1, int i2, int what,
|
|
int simtype)
|
|
{
|
|
int nind1, nind2;
|
|
int *ind1, *ind2;
|
|
float *val1, *val2, stat1, stat2, sim;
|
|
|
|
switch (what) {
|
|
case GK_CSR_ROW:
|
|
if (!mat->rowptr)
|
|
gk_errexit(SIGERR, "Row-based view of the matrix does not exists.\n");
|
|
nind1 = mat->rowptr[i1+1]-mat->rowptr[i1];
|
|
nind2 = mat->rowptr[i2+1]-mat->rowptr[i2];
|
|
ind1 = mat->rowind + mat->rowptr[i1];
|
|
ind2 = mat->rowind + mat->rowptr[i2];
|
|
val1 = mat->rowval + mat->rowptr[i1];
|
|
val2 = mat->rowval + mat->rowptr[i2];
|
|
break;
|
|
|
|
case GK_CSR_COL:
|
|
if (!mat->colptr)
|
|
gk_errexit(SIGERR, "Column-based view of the matrix does not exists.\n");
|
|
nind1 = mat->colptr[i1+1]-mat->colptr[i1];
|
|
nind2 = mat->colptr[i2+1]-mat->colptr[i2];
|
|
ind1 = mat->colind + mat->colptr[i1];
|
|
ind2 = mat->colind + mat->colptr[i2];
|
|
val1 = mat->colval + mat->colptr[i1];
|
|
val2 = mat->colval + mat->colptr[i2];
|
|
break;
|
|
|
|
default:
|
|
gk_errexit(SIGERR, "Invalid index type of %d.\n", what);
|
|
return 0.0;
|
|
}
|
|
|
|
|
|
switch (simtype) {
|
|
case GK_CSR_COS:
|
|
case GK_CSR_JAC:
|
|
sim = stat1 = stat2 = 0.0;
|
|
i1 = i2 = 0;
|
|
while (i1<nind1 && i2<nind2) {
|
|
if (i1 == nind1) {
|
|
stat2 += val2[i2]*val2[i2];
|
|
i2++;
|
|
}
|
|
else if (i2 == nind2) {
|
|
stat1 += val1[i1]*val1[i1];
|
|
i1++;
|
|
}
|
|
else if (ind1[i1] < ind2[i2]) {
|
|
stat1 += val1[i1]*val1[i1];
|
|
i1++;
|
|
}
|
|
else if (ind1[i1] > ind2[i2]) {
|
|
stat2 += val2[i2]*val2[i2];
|
|
i2++;
|
|
}
|
|
else {
|
|
sim += val1[i1]*val2[i2];
|
|
stat1 += val1[i1]*val1[i1];
|
|
stat2 += val2[i2]*val2[i2];
|
|
i1++;
|
|
i2++;
|
|
}
|
|
}
|
|
if (simtype == GK_CSR_COS)
|
|
sim = (stat1*stat2 > 0.0 ? sim/sqrt(stat1*stat2) : 0.0);
|
|
else
|
|
sim = (stat1+stat2-sim > 0.0 ? sim/(stat1+stat2-sim) : 0.0);
|
|
break;
|
|
|
|
case GK_CSR_MIN:
|
|
sim = stat1 = stat2 = 0.0;
|
|
i1 = i2 = 0;
|
|
while (i1<nind1 && i2<nind2) {
|
|
if (i1 == nind1) {
|
|
stat2 += val2[i2];
|
|
i2++;
|
|
}
|
|
else if (i2 == nind2) {
|
|
stat1 += val1[i1];
|
|
i1++;
|
|
}
|
|
else if (ind1[i1] < ind2[i2]) {
|
|
stat1 += val1[i1];
|
|
i1++;
|
|
}
|
|
else if (ind1[i1] > ind2[i2]) {
|
|
stat2 += val2[i2];
|
|
i2++;
|
|
}
|
|
else {
|
|
sim += gk_min(val1[i1],val2[i2]);
|
|
stat1 += val1[i1];
|
|
stat2 += val2[i2];
|
|
i1++;
|
|
i2++;
|
|
}
|
|
}
|
|
sim = (stat1+stat2-sim > 0.0 ? sim/(stat1+stat2-sim) : 0.0);
|
|
|
|
break;
|
|
|
|
case GK_CSR_AMIN:
|
|
sim = stat1 = stat2 = 0.0;
|
|
i1 = i2 = 0;
|
|
while (i1<nind1 && i2<nind2) {
|
|
if (i1 == nind1) {
|
|
stat2 += val2[i2];
|
|
i2++;
|
|
}
|
|
else if (i2 == nind2) {
|
|
stat1 += val1[i1];
|
|
i1++;
|
|
}
|
|
else if (ind1[i1] < ind2[i2]) {
|
|
stat1 += val1[i1];
|
|
i1++;
|
|
}
|
|
else if (ind1[i1] > ind2[i2]) {
|
|
stat2 += val2[i2];
|
|
i2++;
|
|
}
|
|
else {
|
|
sim += gk_min(val1[i1],val2[i2]);
|
|
stat1 += val1[i1];
|
|
stat2 += val2[i2];
|
|
i1++;
|
|
i2++;
|
|
}
|
|
}
|
|
sim = (stat1 > 0.0 ? sim/stat1 : 0.0);
|
|
|
|
break;
|
|
|
|
default:
|
|
gk_errexit(SIGERR, "Unknown similarity measure %d\n", simtype);
|
|
return -1;
|
|
}
|
|
|
|
return sim;
|
|
|
|
}
|
|
|
|
|
|
/*************************************************************************/
|
|
/*! Computes the similarity between two rows/columns
|
|
|
|
\param mat_a the first matrix. The routine assumes that the indices
|
|
are sorted in increasing order.
|
|
\param mat_b the second matrix. The routine assumes that the indices
|
|
are sorted in increasing order.
|
|
\param i1 is the row/column from the first matrix (mat_a),
|
|
\param i2 is the row/column from the second matrix (mat_b),
|
|
\param what is either GK_CSR_ROW or GK_CSR_COL indicating the type of
|
|
objects between the similarity will be computed,
|
|
\param simtype is the type of similarity and is one of GK_CSR_COS,
|
|
GK_CSR_JAC, GK_CSR_MIN, GK_CSR_AMIN
|
|
\returns the similarity between the two rows/columns.
|
|
*/
|
|
/**************************************************************************/
|
|
float gk_csr_ComputePairSimilarity(gk_csr_t *mat_a, gk_csr_t *mat_b,
|
|
int i1, int i2, int what, int simtype)
|
|
{
|
|
int nind1, nind2;
|
|
int *ind1, *ind2;
|
|
float *val1, *val2, stat1, stat2, sim;
|
|
|
|
switch (what) {
|
|
case GK_CSR_ROW:
|
|
if (!mat_a->rowptr || !mat_b->rowptr)
|
|
gk_errexit(SIGERR, "Row-based view of the matrix does not exists.\n");
|
|
nind1 = mat_a->rowptr[i1+1]-mat_a->rowptr[i1];
|
|
nind2 = mat_b->rowptr[i2+1]-mat_b->rowptr[i2];
|
|
ind1 = mat_a->rowind + mat_a->rowptr[i1];
|
|
ind2 = mat_b->rowind + mat_b->rowptr[i2];
|
|
val1 = mat_a->rowval + mat_a->rowptr[i1];
|
|
val2 = mat_b->rowval + mat_b->rowptr[i2];
|
|
break;
|
|
|
|
case GK_CSR_COL:
|
|
if (!mat_a->colptr || !mat_b->colptr)
|
|
gk_errexit(SIGERR, "Column-based view of the matrix does not exists.\n");
|
|
nind1 = mat_a->colptr[i1+1]-mat_a->colptr[i1];
|
|
nind2 = mat_b->colptr[i2+1]-mat_b->colptr[i2];
|
|
ind1 = mat_a->colind + mat_a->colptr[i1];
|
|
ind2 = mat_b->colind + mat_b->colptr[i2];
|
|
val1 = mat_a->colval + mat_a->colptr[i1];
|
|
val2 = mat_b->colval + mat_b->colptr[i2];
|
|
break;
|
|
|
|
default:
|
|
gk_errexit(SIGERR, "Invalid index type of %d.\n", what);
|
|
return 0.0;
|
|
}
|
|
|
|
|
|
switch (simtype) {
|
|
case GK_CSR_COS:
|
|
case GK_CSR_JAC:
|
|
sim = stat1 = stat2 = 0.0;
|
|
i1 = i2 = 0;
|
|
while (i1<nind1 && i2<nind2) {
|
|
if (i1 == nind1) {
|
|
stat2 += val2[i2]*val2[i2];
|
|
i2++;
|
|
}
|
|
else if (i2 == nind2) {
|
|
stat1 += val1[i1]*val1[i1];
|
|
i1++;
|
|
}
|
|
else if (ind1[i1] < ind2[i2]) {
|
|
stat1 += val1[i1]*val1[i1];
|
|
i1++;
|
|
}
|
|
else if (ind1[i1] > ind2[i2]) {
|
|
stat2 += val2[i2]*val2[i2];
|
|
i2++;
|
|
}
|
|
else {
|
|
sim += val1[i1]*val2[i2];
|
|
stat1 += val1[i1]*val1[i1];
|
|
stat2 += val2[i2]*val2[i2];
|
|
i1++;
|
|
i2++;
|
|
}
|
|
}
|
|
if (simtype == GK_CSR_COS)
|
|
sim = (stat1*stat2 > 0.0 ? sim/sqrt(stat1*stat2) : 0.0);
|
|
else
|
|
sim = (stat1+stat2-sim > 0.0 ? sim/(stat1+stat2-sim) : 0.0);
|
|
break;
|
|
|
|
case GK_CSR_MIN:
|
|
sim = stat1 = stat2 = 0.0;
|
|
i1 = i2 = 0;
|
|
while (i1<nind1 && i2<nind2) {
|
|
if (i1 == nind1) {
|
|
stat2 += val2[i2];
|
|
i2++;
|
|
}
|
|
else if (i2 == nind2) {
|
|
stat1 += val1[i1];
|
|
i1++;
|
|
}
|
|
else if (ind1[i1] < ind2[i2]) {
|
|
stat1 += val1[i1];
|
|
i1++;
|
|
}
|
|
else if (ind1[i1] > ind2[i2]) {
|
|
stat2 += val2[i2];
|
|
i2++;
|
|
}
|
|
else {
|
|
sim += gk_min(val1[i1],val2[i2]);
|
|
stat1 += val1[i1];
|
|
stat2 += val2[i2];
|
|
i1++;
|
|
i2++;
|
|
}
|
|
}
|
|
sim = (stat1+stat2-sim > 0.0 ? sim/(stat1+stat2-sim) : 0.0);
|
|
|
|
break;
|
|
|
|
case GK_CSR_AMIN:
|
|
sim = stat1 = stat2 = 0.0;
|
|
i1 = i2 = 0;
|
|
while (i1<nind1 && i2<nind2) {
|
|
if (i1 == nind1) {
|
|
stat2 += val2[i2];
|
|
i2++;
|
|
}
|
|
else if (i2 == nind2) {
|
|
stat1 += val1[i1];
|
|
i1++;
|
|
}
|
|
else if (ind1[i1] < ind2[i2]) {
|
|
stat1 += val1[i1];
|
|
i1++;
|
|
}
|
|
else if (ind1[i1] > ind2[i2]) {
|
|
stat2 += val2[i2];
|
|
i2++;
|
|
}
|
|
else {
|
|
sim += gk_min(val1[i1],val2[i2]);
|
|
stat1 += val1[i1];
|
|
stat2 += val2[i2];
|
|
i1++;
|
|
i2++;
|
|
}
|
|
}
|
|
sim = (stat1 > 0.0 ? sim/stat1 : 0.0);
|
|
|
|
break;
|
|
|
|
default:
|
|
gk_errexit(SIGERR, "Unknown similarity measure %d\n", simtype);
|
|
return -1;
|
|
}
|
|
|
|
return sim;
|
|
|
|
}
|
|
|
|
/*************************************************************************/
|
|
/*! Finds the n most similar rows (neighbors) to the query.
|
|
|
|
\param mat the matrix itself
|
|
\param nqterms is the number of columns in the query
|
|
\param qind is the list of query columns
|
|
\param qval is the list of correspodning query weights
|
|
\param simtype is the type of similarity and is one of GK_CSR_DOTP,
|
|
GK_CSR_COS, GK_CSR_JAC, GK_CSR_MIN, GK_CSR_AMIN. In case of
|
|
GK_CSR_COS, the rows and the query are assumed to be of unit
|
|
length.
|
|
\param nsim is the maximum number of requested most similar rows.
|
|
If -1 is provided, then everything is returned unsorted.
|
|
\param minsim is the minimum similarity of the requested most
|
|
similar rows
|
|
\param hits is the result set. This array should be at least
|
|
of length nsim.
|
|
\param i_marker is an array of size equal to the number of rows
|
|
whose values are initialized to -1. If NULL is provided
|
|
then this array is allocated and freed internally.
|
|
\param i_cand is an array of size equal to the number of rows.
|
|
If NULL is provided then this array is allocated and freed
|
|
internally.
|
|
\returns The number of identified most similar rows, which can be
|
|
smaller than the requested number of nnbrs in those cases
|
|
in which there are no sufficiently many neighbors.
|
|
*/
|
|
/**************************************************************************/
|
|
int gk_csr_GetSimilarRows(gk_csr_t *mat, int nqterms, int *qind,
|
|
float *qval, int simtype, int nsim, float minsim, gk_fkv_t *hits,
|
|
int *i_marker, gk_fkv_t *i_cand)
|
|
{
|
|
ssize_t i, ii, j, k;
|
|
int nrows, ncols, ncand;
|
|
ssize_t *colptr;
|
|
int *colind, *marker;
|
|
float *colval, *rnorms, mynorm, *rsums, mysum;
|
|
gk_fkv_t *cand;
|
|
|
|
if (nqterms == 0)
|
|
return 0;
|
|
|
|
nrows = mat->nrows;
|
|
ncols = mat->ncols;
|
|
GKASSERT((colptr = mat->colptr) != NULL);
|
|
GKASSERT((colind = mat->colind) != NULL);
|
|
GKASSERT((colval = mat->colval) != NULL);
|
|
|
|
marker = (i_marker ? i_marker : gk_ismalloc(nrows, -1, "gk_csr_SimilarRows: marker"));
|
|
cand = (i_cand ? i_cand : gk_fkvmalloc(nrows, "gk_csr_SimilarRows: cand"));
|
|
|
|
switch (simtype) {
|
|
case GK_CSR_DOTP:
|
|
case GK_CSR_COS:
|
|
for (ncand=0, ii=0; ii<nqterms; ii++) {
|
|
i = qind[ii];
|
|
if (i < ncols) {
|
|
for (j=colptr[i]; j<colptr[i+1]; j++) {
|
|
k = colind[j];
|
|
if (marker[k] == -1) {
|
|
cand[ncand].val = k;
|
|
cand[ncand].key = 0;
|
|
marker[k] = ncand++;
|
|
}
|
|
cand[marker[k]].key += colval[j]*qval[ii];
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
|
|
case GK_CSR_JAC:
|
|
for (ncand=0, ii=0; ii<nqterms; ii++) {
|
|
i = qind[ii];
|
|
if (i < ncols) {
|
|
for (j=colptr[i]; j<colptr[i+1]; j++) {
|
|
k = colind[j];
|
|
if (marker[k] == -1) {
|
|
cand[ncand].val = k;
|
|
cand[ncand].key = 0;
|
|
marker[k] = ncand++;
|
|
}
|
|
cand[marker[k]].key += colval[j]*qval[ii];
|
|
}
|
|
}
|
|
}
|
|
|
|
GKASSERT((rnorms = mat->rnorms) != NULL);
|
|
mynorm = gk_fdot(nqterms, qval, 1, qval, 1);
|
|
|
|
for (i=0; i<ncand; i++)
|
|
cand[i].key = cand[i].key/(rnorms[cand[i].val]+mynorm-cand[i].key);
|
|
break;
|
|
|
|
case GK_CSR_MIN:
|
|
for (ncand=0, ii=0; ii<nqterms; ii++) {
|
|
i = qind[ii];
|
|
if (i < ncols) {
|
|
for (j=colptr[i]; j<colptr[i+1]; j++) {
|
|
k = colind[j];
|
|
if (marker[k] == -1) {
|
|
cand[ncand].val = k;
|
|
cand[ncand].key = 0;
|
|
marker[k] = ncand++;
|
|
}
|
|
cand[marker[k]].key += gk_min(colval[j], qval[ii]);
|
|
}
|
|
}
|
|
}
|
|
|
|
GKASSERT((rsums = mat->rsums) != NULL);
|
|
mysum = gk_fsum(nqterms, qval, 1);
|
|
|
|
for (i=0; i<ncand; i++)
|
|
cand[i].key = cand[i].key/(rsums[cand[i].val]+mysum-cand[i].key);
|
|
break;
|
|
|
|
/* Assymetric MIN similarity */
|
|
case GK_CSR_AMIN:
|
|
for (ncand=0, ii=0; ii<nqterms; ii++) {
|
|
i = qind[ii];
|
|
if (i < ncols) {
|
|
for (j=colptr[i]; j<colptr[i+1]; j++) {
|
|
k = colind[j];
|
|
if (marker[k] == -1) {
|
|
cand[ncand].val = k;
|
|
cand[ncand].key = 0;
|
|
marker[k] = ncand++;
|
|
}
|
|
cand[marker[k]].key += gk_min(colval[j], qval[ii]);
|
|
}
|
|
}
|
|
}
|
|
|
|
mysum = gk_fsum(nqterms, qval, 1);
|
|
|
|
for (i=0; i<ncand; i++)
|
|
cand[i].key = cand[i].key/mysum;
|
|
break;
|
|
|
|
default:
|
|
gk_errexit(SIGERR, "Unknown similarity measure %d\n", simtype);
|
|
return -1;
|
|
}
|
|
|
|
/* go and prune the hits that are bellow minsim */
|
|
for (j=0, i=0; i<ncand; i++) {
|
|
marker[cand[i].val] = -1;
|
|
if (cand[i].key >= minsim)
|
|
cand[j++] = cand[i];
|
|
}
|
|
ncand = j;
|
|
|
|
if (nsim == -1 || nsim >= ncand) {
|
|
nsim = ncand;
|
|
}
|
|
else {
|
|
nsim = gk_min(nsim, ncand);
|
|
gk_dfkvkselect(ncand, nsim, cand);
|
|
gk_fkvsortd(nsim, cand);
|
|
}
|
|
|
|
gk_fkvcopy(nsim, cand, hits);
|
|
|
|
if (i_marker == NULL)
|
|
gk_free((void **)&marker, LTERM);
|
|
if (i_cand == NULL)
|
|
gk_free((void **)&cand, LTERM);
|
|
|
|
return nsim;
|
|
}
|
|
|
|
|
|
/*************************************************************************/
|
|
/*! Returns a symmetric version of a square matrix. The symmetric version
|
|
is constructed by applying an A op A^T operation, where op is one of
|
|
GK_CSR_SYM_SUM, GK_CSR_SYM_MIN, GK_CSR_SYM_MAX, GK_CSR_SYM_AVG.
|
|
|
|
\param mat the matrix to be symmetrized,
|
|
\param op indicates the operation to be performed. The possible values are
|
|
GK_CSR_SYM_SUM, GK_CSR_SYM_MIN, GK_CSR_SYM_MAX, and GK_CSR_SYM_AVG.
|
|
|
|
\returns the symmetrized matrix consisting only of its row-based structure.
|
|
The input matrix is not modified.
|
|
*/
|
|
/**************************************************************************/
|
|
gk_csr_t *gk_csr_MakeSymmetric(gk_csr_t *mat, int op)
|
|
{
|
|
ssize_t i, j, k, nnz;
|
|
int nrows, nadj, hasvals;
|
|
ssize_t *rowptr, *colptr, *nrowptr;
|
|
int *rowind, *colind, *nrowind, *marker, *ids;
|
|
float *rowval=NULL, *colval=NULL, *nrowval=NULL, *wgts=NULL;
|
|
gk_csr_t *nmat;
|
|
|
|
if (mat->nrows != mat->ncols) {
|
|
fprintf(stderr, "gk_csr_MakeSymmetric: The matrix needs to be square.\n");
|
|
return NULL;
|
|
}
|
|
|
|
hasvals = (mat->rowval != NULL);
|
|
|
|
nrows = mat->nrows;
|
|
rowptr = mat->rowptr;
|
|
rowind = mat->rowind;
|
|
if (hasvals)
|
|
rowval = mat->rowval;
|
|
|
|
/* create the column view for efficient processing */
|
|
colptr = gk_zsmalloc(nrows+1, 0, "colptr");
|
|
colind = gk_i32malloc(rowptr[nrows], "colind");
|
|
if (hasvals)
|
|
colval = gk_fmalloc(rowptr[nrows], "colval");
|
|
|
|
for (i=0; i<nrows; i++) {
|
|
for (j=rowptr[i]; j<rowptr[i+1]; j++)
|
|
colptr[rowind[j]]++;
|
|
}
|
|
MAKECSR(i, nrows, colptr);
|
|
|
|
for (i=0; i<nrows; i++) {
|
|
for (j=rowptr[i]; j<rowptr[i+1]; j++) {
|
|
colind[colptr[rowind[j]]] = i;
|
|
if (hasvals)
|
|
colval[colptr[rowind[j]]] = rowval[j];
|
|
colptr[rowind[j]]++;
|
|
}
|
|
}
|
|
SHIFTCSR(i, nrows, colptr);
|
|
|
|
|
|
nmat = gk_csr_Create();
|
|
|
|
nmat->nrows = mat->nrows;
|
|
nmat->ncols = mat->ncols;
|
|
|
|
nrowptr = nmat->rowptr = gk_zmalloc(nrows+1, "gk_csr_MakeSymmetric: nrowptr");
|
|
nrowind = nmat->rowind = gk_imalloc(2*rowptr[nrows], "gk_csr_MakeSymmetric: nrowind");
|
|
if (hasvals)
|
|
nrowval = nmat->rowval = gk_fmalloc(2*rowptr[nrows], "gk_csr_MakeSymmetric: nrowval");
|
|
|
|
marker = gk_ismalloc(nrows, -1, "marker");
|
|
ids = gk_imalloc(nrows, "ids");
|
|
if (hasvals)
|
|
wgts = gk_fmalloc(nrows, "wgts");
|
|
|
|
nrowptr[0] = nnz = 0;
|
|
for (i=0; i<nrows; i++) {
|
|
nadj = 0;
|
|
/* out-edges */
|
|
for (j=rowptr[i]; j<rowptr[i+1]; j++) {
|
|
ids[nadj] = rowind[j];
|
|
if (hasvals)
|
|
wgts[nadj] = (op == GK_CSR_SYM_AVG ? 0.5*rowval[j] : rowval[j]);
|
|
marker[rowind[j]] = nadj++;
|
|
}
|
|
|
|
/* in-edges */
|
|
for (j=colptr[i]; j<colptr[i+1]; j++) {
|
|
if (marker[colind[j]] == -1) {
|
|
if (op != GK_CSR_SYM_MIN) {
|
|
ids[nadj] = colind[j];
|
|
if (hasvals)
|
|
wgts[nadj] = (op == GK_CSR_SYM_AVG ? 0.5*colval[j] : colval[j]);
|
|
nadj++;
|
|
}
|
|
}
|
|
else {
|
|
if (hasvals) {
|
|
switch (op) {
|
|
case GK_CSR_SYM_MAX:
|
|
wgts[marker[colind[j]]] = gk_max(colval[j], wgts[marker[colind[j]]]);
|
|
break;
|
|
case GK_CSR_SYM_MIN:
|
|
wgts[marker[colind[j]]] = gk_min(colval[j], wgts[marker[colind[j]]]);
|
|
break;
|
|
case GK_CSR_SYM_SUM:
|
|
wgts[marker[colind[j]]] += colval[j];
|
|
break;
|
|
case GK_CSR_SYM_AVG:
|
|
wgts[marker[colind[j]]] = 0.5*(wgts[marker[colind[j]]] + colval[j]);
|
|
break;
|
|
default:
|
|
errexit("Unsupported op for MakeSymmetric!\n");
|
|
}
|
|
}
|
|
marker[colind[j]] = -1;
|
|
}
|
|
}
|
|
|
|
/* go over out edges again to resolve any edges that were not found in the in
|
|
* edges */
|
|
for (j=rowptr[i]; j<rowptr[i+1]; j++) {
|
|
if (marker[rowind[j]] != -1) {
|
|
if (op == GK_CSR_SYM_MIN)
|
|
ids[marker[rowind[j]]] = -1;
|
|
marker[rowind[j]] = -1;
|
|
}
|
|
}
|
|
|
|
/* put the non '-1' entries in ids[] into i's row */
|
|
for (j=0; j<nadj; j++) {
|
|
if (ids[j] != -1) {
|
|
nrowind[nnz] = ids[j];
|
|
if (hasvals)
|
|
nrowval[nnz] = wgts[j];
|
|
nnz++;
|
|
}
|
|
}
|
|
nrowptr[i+1] = nnz;
|
|
}
|
|
|
|
gk_free((void **)&colptr, &colind, &colval, &marker, &ids, &wgts, LTERM);
|
|
|
|
return nmat;
|
|
}
|
|
|
|
|
|
/*************************************************************************/
|
|
/*! This function finds the connected components in a graph stored in
|
|
CSR format.
|
|
|
|
\param mat is the graph structure in CSR format
|
|
\param cptr is the ptr structure of the CSR representation of the
|
|
components. The length of this vector must be mat->nrows+1.
|
|
\param cind is the indices structure of the CSR representation of
|
|
the components. The length of this vector must be mat->nrows.
|
|
\param cids is an array that stores the component # of each vertex
|
|
of the graph. The length of this vector must be mat->nrows.
|
|
|
|
\returns the number of components that it found.
|
|
|
|
\note The cptr, cind, and cids parameters can be NULL, in which case
|
|
only the number of connected components is returned.
|
|
*/
|
|
/*************************************************************************/
|
|
int gk_csr_FindConnectedComponents(gk_csr_t *mat, int32_t *cptr, int32_t *cind,
|
|
int32_t *cids)
|
|
{
|
|
ssize_t i, ii, j, jj, k, nvtxs, first, last, ntodo, ncmps;
|
|
ssize_t *xadj;
|
|
int32_t *adjncy, *pos, *todo;
|
|
int32_t mustfree_ccsr=0, mustfree_where=0;
|
|
|
|
if (mat->nrows != mat->ncols) {
|
|
fprintf(stderr, "gk_csr_FindComponents: The matrix needs to be square.\n");
|
|
return -1;
|
|
}
|
|
|
|
nvtxs = mat->nrows;
|
|
xadj = mat->rowptr;
|
|
adjncy = mat->rowind;
|
|
|
|
/* Deal with NULL supplied cptr/cind vectors */
|
|
if (cptr == NULL) {
|
|
cptr = gk_i32malloc(nvtxs+1, "gk_csr_FindComponents: cptr");
|
|
cind = gk_i32malloc(nvtxs, "gk_csr_FindComponents: cind");
|
|
mustfree_ccsr = 1;
|
|
}
|
|
|
|
/* The list of vertices that have not been touched yet.
|
|
The valid entries are from [0..ntodo). */
|
|
todo = gk_i32incset(nvtxs, 0, gk_i32malloc(nvtxs, "gk_csr_FindComponents: todo"));
|
|
|
|
/* For a vertex that has not been visited, pos[i] is the position in the
|
|
todo list that this vertex is stored.
|
|
If a vertex has been visited, pos[i] = -1. */
|
|
pos = gk_i32incset(nvtxs, 0, gk_i32malloc(nvtxs, "gk_csr_FindComponents: pos"));
|
|
|
|
|
|
/* Find the connected componends */
|
|
ncmps = -1;
|
|
ntodo = nvtxs; /* All vertices have not been visited */
|
|
first = last = 0; /* Point to the first and last vertices that have been touched
|
|
but not explored.
|
|
These vertices are stored in cind[first]...cind[last-1]. */
|
|
|
|
while (first < last || ntodo > 0) {
|
|
if (first == last) { /* Find another starting vertex */
|
|
cptr[++ncmps] = first; /* Mark the end of the current CC */
|
|
|
|
/* put the first vertex in the todo list as the start of the new CC */
|
|
ASSERT(pos[todo[0]] != -1);
|
|
cind[last++] = todo[0];
|
|
|
|
pos[todo[0]] = -1;
|
|
todo[0] = todo[--ntodo];
|
|
pos[todo[0]] = 0;
|
|
}
|
|
|
|
i = cind[first++]; /* Get the first visited but unexplored vertex */
|
|
|
|
for (j=xadj[i]; j<xadj[i+1]; j++) {
|
|
k = adjncy[j];
|
|
if (pos[k] != -1) {
|
|
cind[last++] = k;
|
|
|
|
/* Remove k from the todo list and put the last item in the todo
|
|
list at the position that k was so that the todo list will be
|
|
consequtive. The pos[] array is updated accordingly to keep track
|
|
the location of the vertices in the todo[] list. */
|
|
todo[pos[k]] = todo[--ntodo];
|
|
pos[todo[pos[k]]] = pos[k];
|
|
pos[k] = -1;
|
|
}
|
|
}
|
|
}
|
|
cptr[++ncmps] = first;
|
|
|
|
/* see if we need to return cids */
|
|
if (cids != NULL) {
|
|
for (i=0; i<ncmps; i++) {
|
|
for (j=cptr[i]; j<cptr[i+1]; j++)
|
|
cids[cind[j]] = i;
|
|
}
|
|
}
|
|
|
|
if (mustfree_ccsr)
|
|
gk_free((void **)&cptr, &cind, LTERM);
|
|
|
|
gk_free((void **)&pos, &todo, LTERM);
|
|
|
|
return (int) ncmps;
|
|
}
|
|
|
|
|
|
/*************************************************************************/
|
|
/*! Returns a matrix that has been reordered according to the provided
|
|
row/column permutation. The matrix is required to be square and the same
|
|
permutation is applied to both rows and columns.
|
|
|
|
\param[IN] mat is the matrix to be re-ordered.
|
|
\param[IN] perm is the new ordering of the rows & columns
|
|
\param[IN] iperm is the original ordering of the re-ordered matrix's rows & columns
|
|
\returns the newly created reordered matrix.
|
|
|
|
\note Either perm or iperm can be NULL but not both.
|
|
*/
|
|
/**************************************************************************/
|
|
gk_csr_t *gk_csr_ReorderSymmetric(gk_csr_t *mat, int32_t *perm, int32_t *iperm)
|
|
{
|
|
ssize_t j, jj;
|
|
ssize_t *rowptr, *nrowptr;
|
|
int i, k, u, v, nrows;
|
|
int freeperm=0, freeiperm=0;
|
|
int32_t *rowind, *nrowind;
|
|
float *rowval, *nrowval;
|
|
gk_csr_t *nmat;
|
|
|
|
if (mat->nrows != mat->ncols) {
|
|
fprintf(stderr, "gk_csr_ReorderSymmetric: The matrix needs to be square.\n");
|
|
return NULL;
|
|
}
|
|
|
|
if (perm == NULL && iperm == NULL)
|
|
return NULL;
|
|
|
|
nrows = mat->nrows;
|
|
rowptr = mat->rowptr;
|
|
rowind = mat->rowind;
|
|
rowval = mat->rowval;
|
|
|
|
nmat = gk_csr_Create();
|
|
|
|
nmat->nrows = nrows;
|
|
nmat->ncols = nrows;
|
|
|
|
nrowptr = nmat->rowptr = gk_zmalloc(nrows+1, "gk_csr_ReorderSymmetric: rowptr");
|
|
nrowind = nmat->rowind = gk_i32malloc(rowptr[nrows], "gk_csr_ReorderSymmetric: rowind");
|
|
nrowval = nmat->rowval = gk_fmalloc(rowptr[nrows], "gk_csr_ReorderSymmetric: rowval");
|
|
|
|
/* allocate memory for the different structures present in the matrix */
|
|
if (mat->rlabels)
|
|
nmat->rlabels = gk_i32malloc(nrows, "gk_csr_ReorderSymmetric: rlabels");
|
|
if (mat->rmap)
|
|
nmat->rmap = gk_i32malloc(nrows, "gk_csr_ReorderSymmetric: rmap");
|
|
if (mat->rnorms)
|
|
nmat->rnorms = gk_fmalloc(nrows, "gk_csr_ReorderSymmetric: rnorms");
|
|
if (mat->rsums)
|
|
nmat->rsums = gk_fmalloc(nrows, "gk_csr_ReorderSymmetric: rsums");
|
|
if (mat->rsizes)
|
|
nmat->rsizes = gk_fmalloc(nrows, "gk_csr_ReorderSymmetric: rsizes");
|
|
if (mat->rvols)
|
|
nmat->rvols = gk_fmalloc(nrows, "gk_csr_ReorderSymmetric: rvols");
|
|
if (mat->rwgts)
|
|
nmat->rwgts = gk_fmalloc(nrows, "gk_csr_ReorderSymmetric: rwgts");
|
|
|
|
if (mat->clabels)
|
|
nmat->clabels = gk_i32malloc(nrows, "gk_csr_ReorderSymmetric: clabels");
|
|
if (mat->cmap)
|
|
nmat->cmap = gk_i32malloc(nrows, "gk_csr_ReorderSymmetric: cmap");
|
|
if (mat->cnorms)
|
|
nmat->cnorms = gk_fmalloc(nrows, "gk_csr_ReorderSymmetric: cnorms");
|
|
if (mat->csums)
|
|
nmat->csums = gk_fmalloc(nrows, "gk_csr_ReorderSymmetric: csums");
|
|
if (mat->csizes)
|
|
nmat->csizes = gk_fmalloc(nrows, "gk_csr_ReorderSymmetric: csizes");
|
|
if (mat->cvols)
|
|
nmat->cvols = gk_fmalloc(nrows, "gk_csr_ReorderSymmetric: cvols");
|
|
if (mat->cwgts)
|
|
nmat->cwgts = gk_fmalloc(nrows, "gk_csr_ReorderSymmetric: cwgts");
|
|
|
|
|
|
|
|
/* create perm/iperm if not provided */
|
|
if (perm == NULL) {
|
|
freeperm = 1;
|
|
perm = gk_i32malloc(nrows, "gk_csr_ReorderSymmetric: perm");
|
|
for (i=0; i<nrows; i++)
|
|
perm[iperm[i]] = i;
|
|
}
|
|
if (iperm == NULL) {
|
|
freeiperm = 1;
|
|
iperm = gk_i32malloc(nrows, "gk_csr_ReorderSymmetric: iperm");
|
|
for (i=0; i<nrows; i++)
|
|
iperm[perm[i]] = i;
|
|
}
|
|
|
|
/* fill-in the information of the re-ordered matrix */
|
|
nrowptr[0] = jj = 0;
|
|
for (v=0; v<nrows; v++) {
|
|
u = iperm[v];
|
|
for (j=rowptr[u]; j<rowptr[u+1]; j++, jj++) {
|
|
nrowind[jj] = perm[rowind[j]];
|
|
nrowval[jj] = rowval[j];
|
|
}
|
|
|
|
if (mat->rlabels)
|
|
nmat->rlabels[v] = mat->rlabels[u];
|
|
if (mat->rmap)
|
|
nmat->rmap[v] = mat->rmap[u];
|
|
if (mat->rnorms)
|
|
nmat->rnorms[v] = mat->rnorms[u];
|
|
if (mat->rsums)
|
|
nmat->rsums[v] = mat->rsums[u];
|
|
if (mat->rsizes)
|
|
nmat->rsizes[v] = mat->rsizes[u];
|
|
if (mat->rvols)
|
|
nmat->rvols[v] = mat->rvols[u];
|
|
if (mat->rwgts)
|
|
nmat->rwgts[v] = mat->rwgts[u];
|
|
|
|
if (mat->clabels)
|
|
nmat->clabels[v] = mat->clabels[u];
|
|
if (mat->cmap)
|
|
nmat->cmap[v] = mat->cmap[u];
|
|
if (mat->cnorms)
|
|
nmat->cnorms[v] = mat->cnorms[u];
|
|
if (mat->csums)
|
|
nmat->csums[v] = mat->csums[u];
|
|
if (mat->csizes)
|
|
nmat->csizes[v] = mat->csizes[u];
|
|
if (mat->cvols)
|
|
nmat->cvols[v] = mat->cvols[u];
|
|
if (mat->cwgts)
|
|
nmat->cwgts[v] = mat->cwgts[u];
|
|
|
|
nrowptr[v+1] = jj;
|
|
}
|
|
|
|
|
|
/* free memory */
|
|
if (freeperm)
|
|
gk_free((void **)&perm, LTERM);
|
|
if (freeiperm)
|
|
gk_free((void **)&iperm, LTERM);
|
|
|
|
return nmat;
|
|
}
|
|
|
|
|
|
/*************************************************************************/
|
|
/*! This function computes a permutation of the rows/columns of a symmetric
|
|
matrix based on a breadth-first-traversal. It can be used for re-ordering
|
|
the matrix to reduce its bandwidth for better cache locality.
|
|
|
|
\param[IN] mat is the matrix whose ordering to be computed.
|
|
\param[IN] maxdegree is the maximum number of nonzeros of the rows that
|
|
will participate in the BFS ordering. Rows with more nonzeros
|
|
will be put at the front of the ordering in decreasing degree
|
|
order.
|
|
\param[IN] v is the starting row of the BFS. A value of -1 indicates that
|
|
a randomly selected row will be used.
|
|
\param[OUT] perm[i] stores the ID of row i in the re-ordered matrix.
|
|
\param[OUT] iperm[i] stores the ID of the row that corresponds to
|
|
the ith vertex in the re-ordered matrix.
|
|
|
|
\note The perm or iperm (but not both) can be NULL, at which point,
|
|
the corresponding arrays are not returned. Though the program
|
|
works fine when both are NULL, doing that is not smart.
|
|
The returned arrays should be freed with gk_free().
|
|
*/
|
|
/*************************************************************************/
|
|
void gk_csr_ComputeBFSOrderingSymmetric(gk_csr_t *mat, int maxdegree, int v,
|
|
int32_t **r_perm, int32_t **r_iperm)
|
|
{
|
|
int i, k, nrows, first, last;
|
|
ssize_t j, *rowptr;
|
|
int32_t *rowind, *cot, *pos;
|
|
|
|
if (mat->nrows != mat->ncols) {
|
|
fprintf(stderr, "gk_csr_ComputeBFSOrderingSymmetric: The matrix needs to be square.\n");
|
|
return;
|
|
}
|
|
if (maxdegree < mat->nrows && v != -1) {
|
|
fprintf(stderr, "gk_csr_ComputeBFSOrderingSymmetric: Since maxdegree node renumbering is requested the starting row should be -1.\n");
|
|
return;
|
|
}
|
|
if (mat->nrows <= 0)
|
|
return;
|
|
|
|
nrows = mat->nrows;
|
|
rowptr = mat->rowptr;
|
|
rowind = mat->rowind;
|
|
|
|
/* This array will function like pos + touched of the CC method */
|
|
pos = gk_i32incset(nrows, 0, gk_i32malloc(nrows, "gk_csr_ComputeBFSOrderingSymmetric: pos"));
|
|
|
|
/* This array ([C]losed[O]pen[T]odo => cot) serves three purposes.
|
|
Positions from [0...first) is the current iperm[] vector of the explored rows;
|
|
Positions from [first...last) is the OPEN list (i.e., visited rows);
|
|
Positions from [last...nrows) is the todo list. */
|
|
cot = gk_i32incset(nrows, 0, gk_i32malloc(nrows, "gk_csr_ComputeBFSOrderingSymmetric: cot"));
|
|
|
|
first = last = 0;
|
|
|
|
/* deal with maxdegree handling */
|
|
if (maxdegree < nrows) {
|
|
last = nrows;
|
|
for (i=nrows-1; i>=0; i--) {
|
|
if (rowptr[i+1]-rowptr[i] < maxdegree) {
|
|
cot[--last] = i;
|
|
pos[i] = last;
|
|
}
|
|
else {
|
|
cot[first++] = i;
|
|
pos[i] = -1;
|
|
}
|
|
}
|
|
GKASSERT(first == last);
|
|
|
|
if (last > 0) { /* reorder them in degree decreasing order */
|
|
gk_ikv_t *cand = gk_ikvmalloc(first, "gk_csr_ComputeBFSOrderingSymmetric: cand");
|
|
|
|
for (i=0; i<first; i++) {
|
|
k = cot[i];
|
|
cand[i].key = (int)(rowptr[k+1]-rowptr[k]);
|
|
cand[i].val = k;
|
|
}
|
|
|
|
gk_ikvsortd(first, cand);
|
|
for (i=0; i<first; i++)
|
|
cot[i] = cand[i].val;
|
|
|
|
gk_free((void **)&cand, LTERM);
|
|
}
|
|
|
|
v = cot[last + RandomInRange(nrows-last)];
|
|
}
|
|
|
|
|
|
/* swap v with the front of the todo list */
|
|
cot[pos[v]] = cot[last];
|
|
pos[cot[last]] = pos[v];
|
|
|
|
cot[last] = v;
|
|
pos[v] = last;
|
|
|
|
|
|
/* start processing the nodes */
|
|
while (first < nrows) {
|
|
if (first == last) { /* find another starting row */
|
|
k = cot[last];
|
|
GKASSERT(pos[k] != -1);
|
|
pos[k] = -1; /* mark node as being visited */
|
|
last++;
|
|
}
|
|
|
|
i = cot[first++]; /* the ++ advances the explored rows */
|
|
for (j=rowptr[i]; j<rowptr[i+1]; j++) {
|
|
k = rowind[j];
|
|
/* if a node has already been visited, its perm[] will be -1 */
|
|
if (pos[k] != -1) {
|
|
/* pos[k] is the location within iperm of where k resides (it is in the 'todo' part);
|
|
It is placed in that location cot[last] (end of OPEN list) that we
|
|
are about to overwrite and update pos[cot[last]] to reflect that. */
|
|
cot[pos[k]] = cot[last]; /* put the head of the todo list to
|
|
where k was in the todo list */
|
|
pos[cot[last]] = pos[k]; /* update perm to reflect the move */
|
|
|
|
cot[last++] = k; /* put node at the end of the OPEN list */
|
|
pos[k] = -1; /* mark node as being visited */
|
|
}
|
|
}
|
|
}
|
|
|
|
/* time to decide what to return */
|
|
if (r_perm != NULL) {
|
|
/* use the 'pos' array to build the perm array */
|
|
for (i=0; i<nrows; i++)
|
|
pos[cot[i]] = i;
|
|
|
|
*r_perm = pos;
|
|
pos = NULL;
|
|
}
|
|
|
|
if (r_iperm != NULL) {
|
|
*r_iperm = cot;
|
|
cot = NULL;
|
|
}
|
|
|
|
/* cleanup memory */
|
|
gk_free((void **)&pos, &cot, LTERM);
|
|
|
|
}
|
|
|
|
|
|
/*************************************************************************/
|
|
/*! This function computes a permutation of the rows of a symmetric matrix
|
|
based on a best-first-traversal. It can be used for re-ordering the matrix
|
|
to reduce its bandwidth for better cache locality.
|
|
|
|
\param[IN] mat is the matrix structure.
|
|
\param[IN] v is the starting row of the best-first traversal.
|
|
\param[IN] type indicates the criteria to use to measure the 'bestness'
|
|
of a row.
|
|
\param[OUT] perm[i] stores the ID of row i in the re-ordered matrix.
|
|
\param[OUT] iperm[i] stores the ID of the row that corresponds to
|
|
the ith row in the re-ordered matrix.
|
|
|
|
\note The perm or iperm (but not both) can be NULL, at which point,
|
|
the corresponding arrays are not returned. Though the program
|
|
works fine when both are NULL, doing that is not smart.
|
|
The returned arrays should be freed with gk_free().
|
|
*/
|
|
/*************************************************************************/
|
|
void gk_csr_ComputeBestFOrderingSymmetric(gk_csr_t *mat, int v, int type,
|
|
int32_t **r_perm, int32_t **r_iperm)
|
|
{
|
|
ssize_t j, jj, *rowptr;
|
|
int i, k, u, nrows, nopen, ntodo;
|
|
int32_t *rowind, *perm, *degrees, *wdegrees, *sod, *level, *ot, *pos;
|
|
gk_i32pq_t *queue;
|
|
|
|
if (mat->nrows != mat->ncols) {
|
|
fprintf(stderr, "gk_csr_ComputeBestFOrderingSymmetric: The matrix needs to be square.\n");
|
|
return;
|
|
}
|
|
if (mat->nrows <= 0)
|
|
return;
|
|
|
|
nrows = mat->nrows;
|
|
rowptr = mat->rowptr;
|
|
rowind = mat->rowind;
|
|
|
|
|
|
/* the degree of the vertices in the closed list */
|
|
degrees = gk_i32smalloc(nrows, 0, "gk_csr_ComputeBestFOrderingSymmetric: degrees");
|
|
|
|
/* the weighted degree of the vertices in the closed list for type==3 */
|
|
wdegrees = gk_i32smalloc(nrows, 0, "gk_csr_ComputeBestFOrderingSymmetric: wdegrees");
|
|
|
|
/* the sum of differences for type==4 */
|
|
sod = gk_i32smalloc(nrows, 0, "gk_csr_ComputeBestFOrderingSymmetric: sod");
|
|
|
|
/* the encountering level of a vertex type==5 */
|
|
level = gk_i32smalloc(nrows, 0, "gk_csr_ComputeBestFOrderingSymmetric: level");
|
|
|
|
/* The open+todo list of vertices.
|
|
The vertices from [0..nopen] are the open vertices.
|
|
The vertices from [nopen..ntodo) are the todo vertices.
|
|
*/
|
|
ot = gk_i32incset(nrows, 0, gk_i32malloc(nrows, "gk_csr_ComputeBestFOrderingSymmetric: ot"));
|
|
|
|
/* For a vertex that has not been explored, pos[i] is the position in the ot list. */
|
|
pos = gk_i32incset(nrows, 0, gk_i32malloc(nrows, "gk_csr_ComputeBestFOrderingSymmetric: pos"));
|
|
|
|
/* if perm[i] >= 0, then perm[i] is the order of vertex i; otherwise perm[i] == -1. */
|
|
perm = gk_i32smalloc(nrows, -1, "gk_csr_ComputeBestFOrderingSymmetric: perm");
|
|
|
|
/* create the queue and put the starting vertex in it */
|
|
queue = gk_i32pqCreate(nrows);
|
|
gk_i32pqInsert(queue, v, 1);
|
|
|
|
/* put v at the front of the open list */
|
|
pos[0] = ot[0] = v;
|
|
pos[v] = ot[v] = 0;
|
|
nopen = 1;
|
|
ntodo = nrows;
|
|
|
|
/* start processing the nodes */
|
|
for (i=0; i<nrows; i++) {
|
|
if (nopen == 0) { /* deal with non-connected graphs */
|
|
gk_i32pqInsert(queue, ot[0], 1);
|
|
nopen++;
|
|
}
|
|
|
|
if ((v = gk_i32pqGetTop(queue)) == -1)
|
|
gk_errexit(SIGERR, "The priority queue got empty ahead of time [i=%d].\n", i);
|
|
|
|
if (perm[v] != -1)
|
|
gk_errexit(SIGERR, "The perm[%d] has already been set.\n", v);
|
|
perm[v] = i;
|
|
|
|
if (ot[pos[v]] != v)
|
|
gk_errexit(SIGERR, "Something went wrong [ot[pos[%d]]!=%d.\n", v, v);
|
|
if (pos[v] >= nopen)
|
|
gk_errexit(SIGERR, "The position of v is not in open list. pos[%d]=%d is >=%d.\n", v, pos[v], nopen);
|
|
|
|
/* remove v from the open list and re-arrange the todo part of the list */
|
|
ot[pos[v]] = ot[nopen-1];
|
|
pos[ot[nopen-1]] = pos[v];
|
|
if (ntodo > nopen) {
|
|
ot[nopen-1] = ot[ntodo-1];
|
|
pos[ot[ntodo-1]] = nopen-1;
|
|
}
|
|
nopen--;
|
|
ntodo--;
|
|
|
|
for (j=rowptr[v]; j<rowptr[v+1]; j++) {
|
|
u = rowind[j];
|
|
if (perm[u] == -1) {
|
|
/* update ot list, if u is not in the open list by putting it at the end
|
|
of the open list. */
|
|
if (degrees[u] == 0) {
|
|
ot[pos[u]] = ot[nopen];
|
|
pos[ot[nopen]] = pos[u];
|
|
ot[nopen] = u;
|
|
pos[u] = nopen;
|
|
nopen++;
|
|
|
|
level[u] = level[v]+1;
|
|
gk_i32pqInsert(queue, u, 0);
|
|
}
|
|
|
|
|
|
/* update the in-closed degree */
|
|
degrees[u]++;
|
|
|
|
/* update the queues based on the type */
|
|
switch (type) {
|
|
case 1: /* DFS */
|
|
gk_i32pqUpdate(queue, u, 1000*(i+1)+degrees[u]);
|
|
break;
|
|
|
|
case 2: /* Max in closed degree */
|
|
gk_i32pqUpdate(queue, u, degrees[u]);
|
|
break;
|
|
|
|
case 3: /* Sum of orders in closed list */
|
|
wdegrees[u] += i;
|
|
gk_i32pqUpdate(queue, u, wdegrees[u]);
|
|
break;
|
|
|
|
case 4: /* Sum of order-differences */
|
|
/* this is handled at the end of the loop */
|
|
;
|
|
break;
|
|
|
|
case 5: /* BFS with in degree priority */
|
|
gk_i32pqUpdate(queue, u, -(1000*level[u] - degrees[u]));
|
|
break;
|
|
|
|
case 6: /* Hybrid of 1+2 */
|
|
gk_i32pqUpdate(queue, u, (i+1)*degrees[u]);
|
|
break;
|
|
|
|
default:
|
|
;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (type == 4) { /* update all the vertices in the open list */
|
|
for (j=0; j<nopen; j++) {
|
|
u = ot[j];
|
|
if (perm[u] != -1)
|
|
gk_errexit(SIGERR, "For i=%d, the open list contains a closed row: ot[%zd]=%d, perm[%d]=%d.\n", i, j, u, u, perm[u]);
|
|
sod[u] += degrees[u];
|
|
if (i<1000 || i%25==0)
|
|
gk_i32pqUpdate(queue, u, sod[u]);
|
|
}
|
|
}
|
|
|
|
/*
|
|
for (j=0; j<ntodo; j++) {
|
|
if (pos[ot[j]] != j)
|
|
gk_errexit(SIGERR, "pos[ot[%zd]] != %zd.\n", j, j);
|
|
}
|
|
*/
|
|
|
|
}
|
|
|
|
|
|
/* time to decide what to return */
|
|
if (r_iperm != NULL) {
|
|
/* use the 'degrees' array to build the iperm array */
|
|
for (i=0; i<nrows; i++)
|
|
degrees[perm[i]] = i;
|
|
|
|
*r_iperm = degrees;
|
|
degrees = NULL;
|
|
}
|
|
|
|
if (r_perm != NULL) {
|
|
*r_perm = perm;
|
|
perm = NULL;
|
|
}
|
|
|
|
|
|
|
|
|
|
/* cleanup memory */
|
|
gk_i32pqDestroy(queue);
|
|
gk_free((void **)&perm, °rees, &wdegrees, &sod, &ot, &pos, &level, LTERM);
|
|
|
|
}
|
|
|
|
|