You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
271 lines
10 KiB
271 lines
10 KiB
/*!
|
|
\file gk_mksort.h
|
|
\brief Templates for the qsort routine
|
|
|
|
\date Started 3/28/07
|
|
\author George
|
|
\version\verbatim $Id: gk_mksort.h 21051 2017-05-25 04:36:14Z karypis $ \endverbatim
|
|
*/
|
|
|
|
|
|
#ifndef _GK_MKSORT_H_
|
|
#define _GK_MKSORT_H_
|
|
|
|
/* Adopted from GNU glibc by Mjt.
|
|
* See stdlib/qsort.c in glibc */
|
|
|
|
/* Copyright (C) 1991, 1992, 1996, 1997, 1999 Free Software Foundation, Inc.
|
|
This file is part of the GNU C Library.
|
|
Written by Douglas C. Schmidt (schmidt@ics.uci.edu).
|
|
|
|
The GNU C Library is free software; you can redistribute it and/or
|
|
modify it under the terms of the GNU Lesser General Public
|
|
License as published by the Free Software Foundation; either
|
|
version 2.1 of the License, or (at your option) any later version.
|
|
|
|
The GNU C Library is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
Lesser General Public License for more details.
|
|
|
|
You should have received a copy of the GNU Lesser General Public
|
|
License along with the GNU C Library; if not, write to the Free
|
|
Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
|
|
02111-1307 USA. */
|
|
|
|
/* in-line qsort implementation. Differs from traditional qsort() routine
|
|
* in that it is a macro, not a function, and instead of passing an address
|
|
* of a comparision routine to the function, it is possible to inline
|
|
* comparision routine, thus speed up sorting alot.
|
|
*
|
|
* Usage:
|
|
* #include "iqsort.h"
|
|
* #define islt(a,b) (strcmp((*a),(*b))<0)
|
|
* char *arr[];
|
|
* int n;
|
|
* GKQSORT(char*, arr, n, islt);
|
|
*
|
|
* The "prototype" and 4 arguments are:
|
|
* GKQSORT(TYPE,BASE,NELT,ISLT)
|
|
* 1) type of each element, TYPE,
|
|
* 2) address of the beginning of the array, of type TYPE*,
|
|
* 3) number of elements in the array, and
|
|
* 4) comparision routine.
|
|
* Array pointer and number of elements are referenced only once.
|
|
* This is similar to a call
|
|
* qsort(BASE,NELT,sizeof(TYPE),ISLT)
|
|
* with the difference in last parameter.
|
|
* Note the islt macro/routine (it receives pointers to two elements):
|
|
* the only condition of interest is whenever one element is less than
|
|
* another, no other conditions (greather than, equal to etc) are tested.
|
|
* So, for example, to define integer sort, use:
|
|
* #define islt(a,b) ((*a)<(*b))
|
|
* GKQSORT(int, arr, n, islt)
|
|
*
|
|
* The macro could be used to implement a sorting function (see examples
|
|
* below), or to implement the sorting algorithm inline. That is, either
|
|
* create a sorting function and use it whenever you want to sort something,
|
|
* or use GKQSORT() macro directly instead a call to such routine. Note that
|
|
* the macro expands to quite some code (compiled size of int qsort on x86
|
|
* is about 700..800 bytes).
|
|
*
|
|
* Using this macro directly it isn't possible to implement traditional
|
|
* qsort() routine, because the macro assumes sizeof(element) == sizeof(TYPE),
|
|
* while qsort() allows element size to be different.
|
|
*
|
|
* Several ready-to-use examples:
|
|
*
|
|
* Sorting array of integers:
|
|
* void int_qsort(int *arr, unsigned n) {
|
|
* #define int_lt(a,b) ((*a)<(*b))
|
|
* GKQSORT(int, arr, n, int_lt);
|
|
* }
|
|
*
|
|
* Sorting array of string pointers:
|
|
* void str_qsort(char *arr[], unsigned n) {
|
|
* #define str_lt(a,b) (strcmp((*a),(*b)) < 0)
|
|
* GKQSORT(char*, arr, n, str_lt);
|
|
* }
|
|
*
|
|
* Sorting array of structures:
|
|
*
|
|
* struct elt {
|
|
* int key;
|
|
* ...
|
|
* };
|
|
* void elt_qsort(struct elt *arr, unsigned n) {
|
|
* #define elt_lt(a,b) ((a)->key < (b)->key)
|
|
* GKQSORT(struct elt, arr, n, elt_lt);
|
|
* }
|
|
*
|
|
* And so on.
|
|
*/
|
|
|
|
/* Swap two items pointed to by A and B using temporary buffer t. */
|
|
#define _GKQSORT_SWAP(a, b, t) ((void)((t = *a), (*a = *b), (*b = t)))
|
|
|
|
/* Discontinue quicksort algorithm when partition gets below this size. */
|
|
#define _GKQSORT_MAX_THRESH 8
|
|
|
|
/* The next 4 #defines implement a very fast in-line stack abstraction. */
|
|
#define _GKQSORT_STACK_SIZE (8 * sizeof(size_t))
|
|
#define _GKQSORT_PUSH(top, low, high) (((top->_lo = (low)), (top->_hi = (high)), ++top))
|
|
#define _GKQSORT_POP(low, high, top) ((--top, (low = top->_lo), (high = top->_hi)))
|
|
#define _GKQSORT_STACK_NOT_EMPTY (_stack < _top)
|
|
|
|
|
|
/* The main code starts here... */
|
|
#define GK_MKQSORT(GKQSORT_TYPE,GKQSORT_BASE,GKQSORT_NELT,GKQSORT_LT) \
|
|
{ \
|
|
GKQSORT_TYPE *const _base = (GKQSORT_BASE); \
|
|
const size_t _elems = (GKQSORT_NELT); \
|
|
GKQSORT_TYPE _hold; \
|
|
\
|
|
if (_elems < 1) \
|
|
return; \
|
|
\
|
|
/* Don't declare two variables of type GKQSORT_TYPE in a single \
|
|
* statement: eg `TYPE a, b;', in case if TYPE is a pointer, \
|
|
* expands to `type* a, b;' wich isn't what we want. \
|
|
*/ \
|
|
\
|
|
if (_elems > _GKQSORT_MAX_THRESH) { \
|
|
GKQSORT_TYPE *_lo = _base; \
|
|
GKQSORT_TYPE *_hi = _lo + _elems - 1; \
|
|
struct { \
|
|
GKQSORT_TYPE *_hi; GKQSORT_TYPE *_lo; \
|
|
} _stack[_GKQSORT_STACK_SIZE], *_top = _stack + 1; \
|
|
\
|
|
while (_GKQSORT_STACK_NOT_EMPTY) { \
|
|
GKQSORT_TYPE *_left_ptr; GKQSORT_TYPE *_right_ptr; \
|
|
\
|
|
/* Select median value from among LO, MID, and HI. Rearrange \
|
|
LO and HI so the three values are sorted. This lowers the \
|
|
probability of picking a pathological pivot value and \
|
|
skips a comparison for both the LEFT_PTR and RIGHT_PTR in \
|
|
the while loops. */ \
|
|
\
|
|
GKQSORT_TYPE *_mid = _lo + ((_hi - _lo) >> 1); \
|
|
\
|
|
if (GKQSORT_LT (_mid, _lo)) \
|
|
_GKQSORT_SWAP (_mid, _lo, _hold); \
|
|
if (GKQSORT_LT (_hi, _mid)) \
|
|
_GKQSORT_SWAP (_mid, _hi, _hold); \
|
|
else \
|
|
goto _jump_over; \
|
|
if (GKQSORT_LT (_mid, _lo)) \
|
|
_GKQSORT_SWAP (_mid, _lo, _hold); \
|
|
_jump_over:; \
|
|
\
|
|
_left_ptr = _lo + 1; \
|
|
_right_ptr = _hi - 1; \
|
|
\
|
|
/* Here's the famous ``collapse the walls'' section of quicksort. \
|
|
Gotta like those tight inner loops! They are the main reason \
|
|
that this algorithm runs much faster than others. */ \
|
|
do { \
|
|
while (GKQSORT_LT (_left_ptr, _mid)) \
|
|
++_left_ptr; \
|
|
\
|
|
while (GKQSORT_LT (_mid, _right_ptr)) \
|
|
--_right_ptr; \
|
|
\
|
|
if (_left_ptr < _right_ptr) { \
|
|
_GKQSORT_SWAP (_left_ptr, _right_ptr, _hold); \
|
|
if (_mid == _left_ptr) \
|
|
_mid = _right_ptr; \
|
|
else if (_mid == _right_ptr) \
|
|
_mid = _left_ptr; \
|
|
++_left_ptr; \
|
|
--_right_ptr; \
|
|
} \
|
|
else if (_left_ptr == _right_ptr) { \
|
|
++_left_ptr; \
|
|
--_right_ptr; \
|
|
break; \
|
|
} \
|
|
} while (_left_ptr <= _right_ptr); \
|
|
\
|
|
/* Set up pointers for next iteration. First determine whether \
|
|
left and right partitions are below the threshold size. If so, \
|
|
ignore one or both. Otherwise, push the larger partition's \
|
|
bounds on the stack and continue sorting the smaller one. */ \
|
|
\
|
|
if (_right_ptr - _lo <= _GKQSORT_MAX_THRESH) { \
|
|
if (_hi - _left_ptr <= _GKQSORT_MAX_THRESH) \
|
|
/* Ignore both small partitions. */ \
|
|
_GKQSORT_POP (_lo, _hi, _top); \
|
|
else \
|
|
/* Ignore small left partition. */ \
|
|
_lo = _left_ptr; \
|
|
} \
|
|
else if (_hi - _left_ptr <= _GKQSORT_MAX_THRESH) \
|
|
/* Ignore small right partition. */ \
|
|
_hi = _right_ptr; \
|
|
else if (_right_ptr - _lo > _hi - _left_ptr) { \
|
|
/* Push larger left partition indices. */ \
|
|
_GKQSORT_PUSH (_top, _lo, _right_ptr); \
|
|
_lo = _left_ptr; \
|
|
} \
|
|
else { \
|
|
/* Push larger right partition indices. */ \
|
|
_GKQSORT_PUSH (_top, _left_ptr, _hi); \
|
|
_hi = _right_ptr; \
|
|
} \
|
|
} \
|
|
} \
|
|
\
|
|
/* Once the BASE array is partially sorted by quicksort the rest \
|
|
is completely sorted using insertion sort, since this is efficient \
|
|
for partitions below MAX_THRESH size. BASE points to the \
|
|
beginning of the array to sort, and END_PTR points at the very \
|
|
last element in the array (*not* one beyond it!). */ \
|
|
\
|
|
{ \
|
|
GKQSORT_TYPE *const _end_ptr = _base + _elems - 1; \
|
|
GKQSORT_TYPE *_tmp_ptr = _base; \
|
|
register GKQSORT_TYPE *_run_ptr; \
|
|
GKQSORT_TYPE *_thresh; \
|
|
\
|
|
_thresh = _base + _GKQSORT_MAX_THRESH; \
|
|
if (_thresh > _end_ptr) \
|
|
_thresh = _end_ptr; \
|
|
\
|
|
/* Find smallest element in first threshold and place it at the \
|
|
array's beginning. This is the smallest array element, \
|
|
and the operation speeds up insertion sort's inner loop. */ \
|
|
\
|
|
for (_run_ptr = _tmp_ptr + 1; _run_ptr <= _thresh; ++_run_ptr) \
|
|
if (GKQSORT_LT (_run_ptr, _tmp_ptr)) \
|
|
_tmp_ptr = _run_ptr; \
|
|
\
|
|
if (_tmp_ptr != _base) \
|
|
_GKQSORT_SWAP (_tmp_ptr, _base, _hold); \
|
|
\
|
|
/* Insertion sort, running from left-hand-side \
|
|
* up to right-hand-side. */ \
|
|
\
|
|
_run_ptr = _base + 1; \
|
|
while (++_run_ptr <= _end_ptr) { \
|
|
_tmp_ptr = _run_ptr - 1; \
|
|
while (GKQSORT_LT (_run_ptr, _tmp_ptr)) \
|
|
--_tmp_ptr; \
|
|
\
|
|
++_tmp_ptr; \
|
|
if (_tmp_ptr != _run_ptr) { \
|
|
GKQSORT_TYPE *_trav = _run_ptr + 1; \
|
|
while (--_trav >= _run_ptr) { \
|
|
GKQSORT_TYPE *_hi; GKQSORT_TYPE *_lo; \
|
|
_hold = *_trav; \
|
|
\
|
|
for (_hi = _lo = _trav; --_lo >= _tmp_ptr; _hi = _lo) \
|
|
*_hi = *_lo; \
|
|
*_hi = _hold; \
|
|
} \
|
|
} \
|
|
} \
|
|
} \
|
|
\
|
|
}
|
|
|
|
#endif
|
|
|