Cloned library HDF5-1.14.1 with extra build files for internal package management.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

3524 lines
135 KiB

/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
* Copyright by The HDF Group. *
* All rights reserved. *
* *
* This file is part of HDF5. The full HDF5 copyright notice, including *
* terms governing use, modification, and redistribution, is contained in *
* the COPYING file, which can be found at the root of the source code *
* distribution tree, or in https://www.hdfgroup.org/licenses. *
* If you do not have access to either file, you may request a copy from *
* help@hdfgroup.org. *
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
/***********************************************************
*
* Test program: th5s
*
* Test the dataspace functionality
*
*************************************************************/
#include "testhdf5.h"
#include "H5srcdir.h"
#include "H5Iprivate.h"
#include "H5Pprivate.h"
/*
* This file needs to access private information from the H5S package.
* This file also needs to access the dataspace testing code.
*/
#define H5S_FRIEND /*suppress error about including H5Spkg */
#define H5S_TESTING /*suppress warning about H5S testing funcs*/
#include "H5Spkg.h" /* Dataspaces */
/*
* This file needs to access private information from the H5O package.
* This file also needs to access the dataspace testing code.
*/
#define H5O_FRIEND /*suppress error about including H5Opkg */
#define H5O_TESTING
#include "H5Opkg.h" /* Object header */
#define TESTFILE "th5s.h5"
#define DATAFILE "th5s1.h5"
#define NULLFILE "th5s2.h5"
#define BASICFILE "th5s3.h5"
#define ZEROFILE "th5s4.h5"
#define BASICDATASET "basic_dataset"
#define BASICDATASET1 "basic_dataset1"
#define BASICDATASET2 "basic_dataset2"
#define BASICDATASET3 "basic_dataset3"
#define BASICDATASET4 "basic_dataset4"
#define BASICATTR "basic_attribute"
#define NULLDATASET "null_dataset"
#define NULLATTR "null_attribute"
#define EXTFILE_NAME "ext_file"
/* 3-D dataset with fixed dimensions */
#define SPACE1_RANK 3
#define SPACE1_DIM1 3
#define SPACE1_DIM2 15
#define SPACE1_DIM3 13
/* 4-D dataset with one unlimited dimension */
#define SPACE2_RANK 4
#define SPACE2_DIM1 0
#define SPACE2_DIM2 15
#define SPACE2_DIM3 13
#define SPACE2_DIM4 23
#define SPACE2_MAX1 H5S_UNLIMITED
#define SPACE2_MAX2 15
#define SPACE2_MAX3 13
#define SPACE2_MAX4 23
/* Scalar dataset with simple datatype */
#define SPACE3_RANK 0
unsigned space3_data = 65;
/* Scalar dataset with compound datatype */
#define SPACE4_FIELDNAME1 "c1"
#define SPACE4_FIELDNAME2 "u"
#define SPACE4_FIELDNAME3 "f"
#define SPACE4_FIELDNAME4 "c2"
size_t space4_field1_off = 0;
size_t space4_field2_off = 0;
size_t space4_field3_off = 0;
size_t space4_field4_off = 0;
struct space4_struct {
char c1;
unsigned u;
float f;
char c2;
} space4_data = {'v', 987123, -3.14F, 'g'}; /* Test data for 4th dataspace */
/*
* Testing configuration defines used by:
* test_h5s_encode_regular_hyper()
* test_h5s_encode_irregular_hyper()
* test_h5s_encode_points()
*/
#define CONFIG_8 1
#define CONFIG_16 2
#define CONFIG_32 3
#define POWER8 256 /* 2^8 */
#define POWER16 65536 /* 2^16 */
#define POWER32 4294967296 /* 2^32 */
/****************************************************************
**
** test_h5s_basic(): Test basic H5S (dataspace) code.
**
****************************************************************/
static void
test_h5s_basic(void)
{
hid_t fid1; /* HDF5 File IDs */
hid_t sid1, sid2; /* Dataspace ID */
hid_t dset1; /* Dataset ID */
hid_t aid1; /* Attribute ID */
int rank; /* Logical rank of dataspace */
hsize_t dims1[] = {SPACE1_DIM1, SPACE1_DIM2, SPACE1_DIM3};
hsize_t dims2[] = {SPACE2_DIM1, SPACE2_DIM2, SPACE2_DIM3, SPACE2_DIM4};
hsize_t dims3[H5S_MAX_RANK + 1];
hsize_t max2[] = {SPACE2_MAX1, SPACE2_MAX2, SPACE2_MAX3, SPACE2_MAX4};
hsize_t tdims[4]; /* Dimension array to test with */
hsize_t tmax[4];
hssize_t n; /* Number of dataspace elements */
hbool_t driver_is_default_compatible;
herr_t ret; /* Generic return value */
/* Output message about test being performed */
MESSAGE(5, ("Testing Dataspace Manipulation\n"));
sid1 = H5Screate_simple(SPACE1_RANK, dims1, max2);
CHECK(sid1, FAIL, "H5Screate_simple");
n = H5Sget_simple_extent_npoints(sid1);
CHECK(n, FAIL, "H5Sget_simple_extent_npoints");
VERIFY(n, SPACE1_DIM1 * SPACE1_DIM2 * SPACE1_DIM3, "H5Sget_simple_extent_npoints");
rank = H5Sget_simple_extent_ndims(sid1);
CHECK(rank, FAIL, "H5Sget_simple_extent_ndims");
VERIFY(rank, SPACE1_RANK, "H5Sget_simple_extent_ndims");
rank = H5Sget_simple_extent_dims(sid1, tdims, NULL);
CHECK(rank, FAIL, "H5Sget_simple_extent_dims");
VERIFY(HDmemcmp(tdims, dims1, SPACE1_RANK * sizeof(hsize_t)), 0, "H5Sget_simple_extent_dims");
sid2 = H5Screate_simple(SPACE2_RANK, dims2, max2);
CHECK(sid2, FAIL, "H5Screate_simple");
n = H5Sget_simple_extent_npoints(sid2);
CHECK(n, FAIL, "H5Sget_simple_extent_npoints");
VERIFY(n, SPACE2_DIM1 * SPACE2_DIM2 * SPACE2_DIM3 * SPACE2_DIM4, "H5Sget_simple_extent_npoints");
rank = H5Sget_simple_extent_ndims(sid2);
CHECK(rank, FAIL, "H5Sget_simple_extent_ndims");
VERIFY(rank, SPACE2_RANK, "H5Sget_simple_extent_ndims");
rank = H5Sget_simple_extent_dims(sid2, tdims, tmax);
CHECK(rank, FAIL, "H5Sget_simple_extent_dims");
VERIFY(HDmemcmp(tdims, dims2, SPACE2_RANK * sizeof(hsize_t)), 0, "H5Sget_simple_extent_dims");
VERIFY(HDmemcmp(tmax, max2, SPACE2_RANK * sizeof(hsize_t)), 0, "H5Sget_simple_extent_dims");
/* Change max dims to be equal to the dimensions */
ret = H5Sset_extent_simple(sid1, SPACE1_RANK, dims1, NULL);
CHECK(ret, FAIL, "H5Sset_extent_simple");
rank = H5Sget_simple_extent_dims(sid1, tdims, tmax);
CHECK(rank, FAIL, "H5Sget_simple_extent_dims");
VERIFY(HDmemcmp(tdims, dims1, SPACE1_RANK * sizeof(hsize_t)), 0, "H5Sget_simple_extent_dims");
VERIFY(HDmemcmp(tmax, dims1, SPACE1_RANK * sizeof(hsize_t)), 0, "H5Sget_simple_extent_dims");
ret = H5Sclose(sid1);
CHECK(ret, FAIL, "H5Sclose");
ret = H5Sclose(sid2);
CHECK(ret, FAIL, "H5Sclose");
/*
* Check to be sure we can't create a simple dataspace that has too many
* dimensions.
*/
H5E_BEGIN_TRY
{
sid1 = H5Screate_simple(H5S_MAX_RANK + 1, dims3, NULL);
}
H5E_END_TRY;
VERIFY(sid1, FAIL, "H5Screate_simple");
/*
* Try reading a file that has been prepared that has a dataset with a
* higher dimensionality than what the library can handle.
*
* If this test fails and the H5S_MAX_RANK variable has changed, follow
* the instructions in space_overflow.c for regenerating the th5s.h5 file.
*/
ret = h5_driver_is_default_vfd_compatible(H5P_DEFAULT, &driver_is_default_compatible);
CHECK_I(ret, "h5_driver_is_default_vfd_compatible");
if (driver_is_default_compatible) {
const char *testfile = H5_get_srcdir_filename(TESTFILE); /* Corrected test file name */
fid1 = H5Fopen(testfile, H5F_ACC_RDONLY, H5P_DEFAULT);
CHECK_I(fid1, "H5Fopen");
if (fid1 >= 0) {
dset1 = H5Dopen2(fid1, "dset", H5P_DEFAULT);
VERIFY(dset1, FAIL, "H5Dopen2");
ret = H5Fclose(fid1);
CHECK_I(ret, "H5Fclose");
}
else
HDprintf("***cannot open the pre-created H5S_MAX_RANK test file (%s)\n", testfile);
}
/* Verify that incorrect dimensions don't work */
dims1[0] = H5S_UNLIMITED;
H5E_BEGIN_TRY
{
sid1 = H5Screate_simple(SPACE1_RANK, dims1, NULL);
}
H5E_END_TRY;
VERIFY(sid1, FAIL, "H5Screate_simple");
dims1[0] = H5S_UNLIMITED;
sid1 = H5Screate(H5S_SIMPLE);
CHECK(sid1, FAIL, "H5Screate");
H5E_BEGIN_TRY
{
ret = H5Sset_extent_simple(sid1, SPACE1_RANK, dims1, NULL);
}
H5E_END_TRY;
VERIFY(ret, FAIL, "H5Sset_extent_simple");
ret = H5Sclose(sid1);
CHECK_I(ret, "H5Sclose");
/*
* Try writing simple dataspaces without setting their extents
*/
/* Create the file */
fid1 = H5Fcreate(BASICFILE, H5F_ACC_TRUNC, H5P_DEFAULT, H5P_DEFAULT);
CHECK(fid1, FAIL, "H5Fcreate");
dims1[0] = SPACE1_DIM1;
sid1 = H5Screate(H5S_SIMPLE);
CHECK(sid1, FAIL, "H5Screate");
sid2 = H5Screate_simple(1, dims1, dims1);
CHECK(sid2, FAIL, "H5Screate");
/* This dataset's space has no extent; it should not be created */
H5E_BEGIN_TRY
{
dset1 = H5Dcreate2(fid1, BASICDATASET, H5T_NATIVE_INT, sid1, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT);
}
H5E_END_TRY
VERIFY(dset1, FAIL, "H5Dcreate2");
dset1 = H5Dcreate2(fid1, BASICDATASET2, H5T_NATIVE_INT, sid2, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT);
CHECK(dset1, FAIL, "H5Dcreate2");
/* Try some writes with the bad dataspace (sid1) */
H5E_BEGIN_TRY
{
ret = H5Dwrite(dset1, H5T_NATIVE_INT, sid1, H5S_ALL, H5P_DEFAULT, &n);
}
H5E_END_TRY
VERIFY(ret, FAIL, "H5Dwrite");
H5E_BEGIN_TRY
{
ret = H5Dwrite(dset1, H5T_NATIVE_INT, H5S_ALL, sid1, H5P_DEFAULT, &n);
}
H5E_END_TRY
VERIFY(ret, FAIL, "H5Dwrite");
H5E_BEGIN_TRY
{
ret = H5Dwrite(dset1, H5T_NATIVE_INT, sid1, sid1, H5P_DEFAULT, &n);
}
H5E_END_TRY
VERIFY(ret, FAIL, "H5Dwrite");
/* Try to iterate using the bad dataspace */
H5E_BEGIN_TRY
{
ret = H5Diterate(&n, H5T_NATIVE_INT, sid1, NULL, NULL);
}
H5E_END_TRY
VERIFY(ret, FAIL, "H5Diterate");
/* Try to fill using the bad dataspace */
H5E_BEGIN_TRY
{
ret = H5Dfill(NULL, H5T_NATIVE_INT, &n, H5T_NATIVE_INT, sid1);
}
H5E_END_TRY
VERIFY(ret, FAIL, "H5Dfill");
/* Now use the bad dataspace as the space for an attribute */
H5E_BEGIN_TRY
{
aid1 = H5Acreate2(dset1, BASICATTR, H5T_NATIVE_INT, sid1, H5P_DEFAULT, H5P_DEFAULT);
}
H5E_END_TRY
VERIFY(aid1, FAIL, "H5Acreate2");
/* Make sure that dataspace reads using the bad dataspace fail */
H5E_BEGIN_TRY
{
ret = H5Dread(dset1, H5T_NATIVE_INT, sid1, H5S_ALL, H5P_DEFAULT, &n);
}
H5E_END_TRY
VERIFY(ret, FAIL, "H5Dread");
H5E_BEGIN_TRY
{
ret = H5Dread(dset1, H5T_NATIVE_INT, H5S_ALL, sid1, H5P_DEFAULT, &n);
}
H5E_END_TRY
VERIFY(ret, FAIL, "H5Dread");
H5E_BEGIN_TRY
{
ret = H5Dread(dset1, H5T_NATIVE_INT, sid1, sid1, H5P_DEFAULT, &n);
}
H5E_END_TRY
VERIFY(ret, FAIL, "H5Dread");
/* Clean up */
ret = H5Dclose(dset1);
CHECK(ret, FAIL, "H5Dclose");
ret = H5Sclose(sid1);
CHECK(ret, FAIL, "H5Sclose");
ret = H5Sclose(sid2);
CHECK(ret, FAIL, "H5Sclose");
ret = H5Fclose(fid1);
CHECK(ret, FAIL, "H5Fclose");
} /* test_h5s_basic() */
/****************************************************************
**
** test_h5s_null(): Test NULL dataspace
**
****************************************************************/
static void
test_h5s_null(void)
{
hid_t fid; /* File ID */
hid_t sid; /* Dataspace IDs */
hid_t dset_sid, dset_sid2; /* Dataspace IDs */
hid_t attr_sid; /* Dataspace IDs */
hid_t did; /* Dataset ID */
hid_t attr; /*Attribute ID */
H5S_class_t stype; /* dataspace type */
hssize_t nelem; /* Number of elements */
unsigned uval = 2; /* Buffer for writing to dataset */
int val = 1; /* Buffer for writing to attribute */
H5S_sel_type sel_type; /* Type of selection currently */
hsize_t dims[1] = {10}; /* Dimensions for converting null dataspace to simple */
H5S_class_t space_type; /* Type of dataspace */
herr_t ret; /* Generic return value */
/* Output message about test being performed */
MESSAGE(5, ("Testing Null Dataspace\n"));
/* Create the file */
fid = H5Fcreate(NULLFILE, H5F_ACC_TRUNC, H5P_DEFAULT, H5P_DEFAULT);
CHECK(fid, FAIL, "H5Fcreate");
sid = H5Screate(H5S_NULL);
CHECK(sid, FAIL, "H5Screate");
/* Check that the null dataspace actually has 0 elements */
nelem = H5Sget_simple_extent_npoints(sid);
VERIFY(nelem, 0, "H5Sget_simple_extent_npoints");
/* Check that the dataspace was created with an "all" selection */
sel_type = H5Sget_select_type(sid);
VERIFY(sel_type, H5S_SEL_ALL, "H5Sget_select_type");
/* Check that the null dataspace has 0 elements selected */
nelem = H5Sget_select_npoints(sid);
VERIFY(nelem, 0, "H5Sget_select_npoints");
/* Change to "none" selection */
ret = H5Sselect_none(sid);
CHECK(ret, FAIL, "H5Sselect_none");
/* Check that the null dataspace has 0 elements selected */
nelem = H5Sget_select_npoints(sid);
VERIFY(nelem, 0, "H5Sget_select_npoints");
/* Check to be sure we can't set a hyperslab selection on a null dataspace */
H5E_BEGIN_TRY
{
hsize_t start[1] = {0};
hsize_t count[1] = {0};
ret = H5Sselect_hyperslab(sid, H5S_SELECT_SET, start, NULL, count, NULL);
}
H5E_END_TRY;
VERIFY(ret, FAIL, "H5Sselect_hyperslab");
/* Check to be sure we can't set a point selection on a null dataspace */
H5E_BEGIN_TRY
{
hsize_t coord[1][1]; /* Coordinates for point selection */
coord[0][0] = 0;
ret = H5Sselect_elements(sid, H5S_SELECT_SET, (size_t)1, (const hsize_t *)coord);
}
H5E_END_TRY;
VERIFY(ret, FAIL, "H5Sselect_elements");
/* Create first dataset */
did = H5Dcreate2(fid, NULLDATASET, H5T_NATIVE_UINT, sid, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT);
CHECK(did, FAIL, "H5Dcreate2");
/* Write "nothing" to the dataset */
ret = H5Dwrite(did, H5T_NATIVE_UINT, H5S_ALL, H5S_ALL, H5P_DEFAULT, &uval);
CHECK(ret, FAIL, "H5Dwrite");
/* Write "nothing" to the dataset (with type conversion :-) */
ret = H5Dwrite(did, H5T_NATIVE_INT, H5S_ALL, H5S_ALL, H5P_DEFAULT, &val);
CHECK(ret, FAIL, "H5Dwrite");
/* Try reading from the dataset (make certain our buffer is unmodified) */
ret = H5Dread(did, H5T_NATIVE_UINT, H5S_ALL, H5S_ALL, H5P_DEFAULT, &uval);
CHECK(ret, FAIL, "H5Dread");
VERIFY(uval, 2, "H5Dread");
/* Try reading from the dataset (with type conversion :-) (make certain our buffer is unmodified) */
ret = H5Dread(did, H5T_NATIVE_INT, H5S_ALL, H5S_ALL, H5P_DEFAULT, &val);
CHECK(ret, FAIL, "H5Dread");
VERIFY(val, 1, "H5Dread");
/* Create an attribute for the group */
attr = H5Acreate2(did, NULLATTR, H5T_NATIVE_INT, sid, H5P_DEFAULT, H5P_DEFAULT);
CHECK(attr, FAIL, "H5Acreate2");
/* Write "nothing" to the attribute */
ret = H5Awrite(attr, H5T_NATIVE_INT, &val);
CHECK(ret, FAIL, "H5Awrite");
/* Write "nothing" to the attribute (with type conversion :-) */
ret = H5Awrite(attr, H5T_NATIVE_UINT, &uval);
CHECK(ret, FAIL, "H5Awrite");
/* Try reading from the attribute (make certain our buffer is unmodified) */
ret = H5Aread(attr, H5T_NATIVE_INT, &val);
CHECK(ret, FAIL, "H5Aread");
VERIFY(val, 1, "H5Aread");
/* Try reading from the attribute (with type conversion :-) (make certain our buffer is unmodified) */
ret = H5Aread(attr, H5T_NATIVE_UINT, &uval);
CHECK(ret, FAIL, "H5Aread");
VERIFY(uval, 2, "H5Aread");
/* Close attribute */
ret = H5Aclose(attr);
CHECK(ret, FAIL, "H5Aclose");
/* Close the dataset */
ret = H5Dclose(did);
CHECK(ret, FAIL, "H5Dclose");
/* Verify that we've got the right kind of dataspace */
space_type = H5Sget_simple_extent_type(sid);
VERIFY(space_type, H5S_NULL, "H5Sget_simple_extent_type");
/* Convert the null dataspace to a simple dataspace */
ret = H5Sset_extent_simple(sid, 1, dims, NULL);
CHECK(ret, FAIL, "H5Sset_extent_simple");
/* Verify that we've got the right kind of dataspace now */
space_type = H5Sget_simple_extent_type(sid);
VERIFY(space_type, H5S_SIMPLE, "H5Sget_simple_extent_type");
/* Close the dataspace */
ret = H5Sclose(sid);
CHECK(ret, FAIL, "H5Sclose");
/* Close the file */
ret = H5Fclose(fid);
CHECK(ret, FAIL, "H5Fclose");
/*============================================
* Reopen the file to check the dataspace
*============================================
*/
fid = H5Fopen(NULLFILE, H5F_ACC_RDONLY, H5P_DEFAULT);
CHECK(fid, FAIL, "H5Fopen");
/* Reopen the dataset */
did = H5Dopen2(fid, NULLDATASET, H5P_DEFAULT);
CHECK(did, FAIL, "H5Dopen2");
/* Get the space of the dataset */
dset_sid = H5Dget_space(did);
CHECK(dset_sid, FAIL, "H5Dget_space");
/* Query the NULL dataspace */
dset_sid2 = H5Scopy(dset_sid);
CHECK(dset_sid2, FAIL, "H5Scopy");
/* Verify the class type of dataspace */
stype = H5Sget_simple_extent_type(dset_sid2);
VERIFY(stype, H5S_NULL, "H5Sget_simple_extent_type");
/* Verify there is zero element in the dataspace */
ret = (herr_t)H5Sget_simple_extent_npoints(dset_sid2);
VERIFY(ret, 0, "H5Sget_simple_extent_npoints");
/* Try reading from the dataset (make certain our buffer is unmodified) */
ret = H5Dread(did, H5T_NATIVE_UINT, H5S_ALL, H5S_ALL, H5P_DEFAULT, &uval);
CHECK(ret, FAIL, "H5Dread");
VERIFY(uval, 2, "H5Dread");
/* Close the dataspace */
ret = H5Sclose(dset_sid);
CHECK(ret, FAIL, "H5Sclose");
ret = H5Sclose(dset_sid2);
CHECK(ret, FAIL, "H5Sclose");
/* Open the attribute for the dataset */
attr = H5Aopen(did, NULLATTR, H5P_DEFAULT);
CHECK(attr, FAIL, "H5Aopen");
/* Get the space of the dataset */
attr_sid = H5Aget_space(attr);
CHECK(attr_sid, FAIL, "H5Aget_space");
/* Verify the class type of dataspace */
stype = H5Sget_simple_extent_type(attr_sid);
VERIFY(stype, H5S_NULL, "H5Sget_simple_extent_type");
/* Verify there is zero element in the dataspace */
ret = (herr_t)H5Sget_simple_extent_npoints(attr_sid);
VERIFY(ret, 0, "H5Sget_simple_extent_npoints");
/* Close the dataspace */
ret = H5Sclose(attr_sid);
CHECK(ret, FAIL, "H5Sclose");
/* Try reading from the attribute (make certain our buffer is unmodified) */
ret = H5Aread(attr, H5T_NATIVE_INT, &val);
CHECK(ret, FAIL, "H5Aread");
VERIFY(val, 1, "H5Aread");
/* Close attribute */
ret = H5Aclose(attr);
CHECK(ret, FAIL, "H5Aclose");
/* Close the dataset */
ret = H5Dclose(did);
CHECK(ret, FAIL, "H5Dclose");
/* Close the file */
ret = H5Fclose(fid);
CHECK(ret, FAIL, "H5Fclose");
} /* end test_h5s_null() */
/****************************************************************
**
** test_h5s_zero_dim(): Test the code for dataspace with zero dimension size
**
****************************************************************/
static void
test_h5s_zero_dim(void)
{
hid_t fid1; /* HDF5 File IDs */
hid_t sid1, attr_sid; /* Dataspace ID */
hid_t sid_chunk; /* Dataspace ID for chunked dataset */
hid_t dset1; /* Dataset ID */
hid_t plist_id; /* Dataset creation property list */
hid_t attr; /* Attribute ID */
int rank; /* Logical rank of dataspace */
hsize_t dims1[] = {0, SPACE1_DIM2, SPACE1_DIM3};
hsize_t max_dims[] = {SPACE1_DIM1 + 1, SPACE1_DIM2, SPACE1_DIM3};
hsize_t extend_dims[] = {SPACE1_DIM1, SPACE1_DIM2, SPACE1_DIM3};
hsize_t chunk_dims[] = {SPACE1_DIM1, SPACE1_DIM2 / 3, SPACE1_DIM3};
hsize_t tdims[SPACE1_RANK]; /* Dimension array to test with */
int wdata[SPACE1_DIM2][SPACE1_DIM3];
int rdata[SPACE1_DIM2][SPACE1_DIM3];
short wdata_short[SPACE1_DIM2][SPACE1_DIM3];
short rdata_short[SPACE1_DIM2][SPACE1_DIM3];
int wdata_real[SPACE1_DIM1][SPACE1_DIM2][SPACE1_DIM3];
int rdata_real[SPACE1_DIM1][SPACE1_DIM2][SPACE1_DIM3];
int val = 3;
hsize_t start[] = {0, 0, 0};
hsize_t count[] = {3, 15, 13};
hsize_t coord[1][3]; /* Coordinates for point selection */
hssize_t nelem; /* Number of elements */
H5S_sel_type sel_type; /* Type of selection currently */
H5S_class_t stype; /* dataspace type */
H5D_alloc_time_t alloc_time; /* Space allocation time */
herr_t ret; /* Generic return value */
unsigned int i, j, k;
/* Output message about test being performed */
MESSAGE(5, ("Testing Dataspace with zero dimension size\n"));
/* Initialize the data */
for (i = 0; i < SPACE1_DIM2; i++)
for (j = 0; j < SPACE1_DIM3; j++) {
wdata[i][j] = (int)(i + j);
rdata[i][j] = 7;
wdata_short[i][j] = (short)(i + j);
rdata_short[i][j] = 7;
}
for (i = 0; i < SPACE1_DIM1; i++)
for (j = 0; j < SPACE1_DIM2; j++)
for (k = 0; k < SPACE1_DIM3; k++)
wdata_real[i][j][k] = (int)(i + j + k);
/* Test with different space allocation times */
for (alloc_time = H5D_ALLOC_TIME_EARLY; alloc_time <= H5D_ALLOC_TIME_INCR; alloc_time++) {
/* Make sure we can create the space with the dimension size 0 (starting from v1.8.7).
* The dimension doesn't need to be unlimited. */
dims1[0] = 0;
dims1[1] = SPACE1_DIM2;
dims1[2] = SPACE1_DIM3;
sid1 = H5Screate_simple(SPACE1_RANK, dims1, NULL);
CHECK(sid1, FAIL, "H5Screate_simple");
ret = H5Sclose(sid1);
CHECK(ret, FAIL, "H5Sclose");
sid1 = H5Screate(H5S_SIMPLE);
CHECK(sid1, FAIL, "H5Screate");
/* SID1 has the 1st dimension size as zero. The maximal dimension will be
* the same as the dimension because of the NULL passed in. */
ret = H5Sset_extent_simple(sid1, SPACE1_RANK, dims1, NULL);
CHECK(ret, FAIL, "H5Sset_extent_simple");
/* Check that the dataspace actually has 0 elements */
nelem = H5Sget_simple_extent_npoints(sid1);
VERIFY(nelem, 0, "H5Sget_simple_extent_npoints");
/* Check that the dataspace was created with an "all" selection */
sel_type = H5Sget_select_type(sid1);
VERIFY(sel_type, H5S_SEL_ALL, "H5Sget_select_type");
/* Check that the dataspace has 0 elements selected */
nelem = H5Sget_select_npoints(sid1);
VERIFY(nelem, 0, "H5Sget_select_npoints");
/* Change to "none" selection */
ret = H5Sselect_none(sid1);
CHECK(ret, FAIL, "H5Sselect_none");
/* Check that the dataspace has 0 elements selected */
nelem = H5Sget_select_npoints(sid1);
VERIFY(nelem, 0, "H5Sget_select_npoints");
/* Try to select all dataspace */
ret = H5Sselect_all(sid1);
CHECK(ret, FAIL, "H5Sselect_all");
/* Check that the dataspace has 0 elements selected */
nelem = H5Sget_select_npoints(sid1);
VERIFY(nelem, 0, "H5Sget_select_npoints");
/* Create the dataspace for chunked dataset with the first dimension size as zero.
* The maximal dimensions are bigger than the dimensions for later expansion. */
sid_chunk = H5Screate_simple(SPACE1_RANK, dims1, max_dims);
CHECK(sid_chunk, FAIL, "H5Screate_simple");
/*============================================
* Make sure we can use 0-dimension to create
* contiguous, chunked, compact, and external
* datasets, and also attribute.
*============================================
*/
fid1 = H5Fcreate(ZEROFILE, H5F_ACC_TRUNC, H5P_DEFAULT, H5P_DEFAULT);
CHECK(fid1, FAIL, "H5Fcreate");
/*===================== Contiguous dataset =======================*/
plist_id = H5Pcreate(H5P_DATASET_CREATE);
CHECK(plist_id, FAIL, "H5Pcreate");
ret = H5Pset_alloc_time(plist_id, alloc_time);
CHECK(ret, FAIL, "H5Pset_alloc_time");
dset1 = H5Dcreate2(fid1, BASICDATASET, H5T_NATIVE_INT, sid1, H5P_DEFAULT, plist_id, H5P_DEFAULT);
CHECK(dset1, FAIL, "H5Dcreate2");
ret = H5Pclose(plist_id);
CHECK(ret, FAIL, "H5Pclose");
/* Write "nothing" to the dataset */
ret = H5Dwrite(dset1, H5T_NATIVE_INT, sid1, H5S_ALL, H5P_DEFAULT, wdata);
CHECK(ret, FAIL, "H5Dwrite");
ret = H5Fflush(fid1, H5F_SCOPE_GLOBAL);
CHECK(ret, FAIL, "H5Fflush");
/* Try reading from the dataset (make certain our buffer is unmodified) */
ret = H5Dread(dset1, H5T_NATIVE_INT, sid1, H5S_ALL, H5P_DEFAULT, rdata);
CHECK(ret, FAIL, "H5Dread");
/* Check results */
for (i = 0; i < SPACE1_DIM2; i++) {
for (j = 0; j < SPACE1_DIM3; j++) {
if (rdata[i][j] != 7) {
H5_FAILED();
HDprintf("element [%d][%d] is %d but should have been 7\n", i, j, rdata[i][j]);
}
}
}
/* Write "nothing" to the dataset (with type conversion :-) */
ret = H5Dwrite(dset1, H5T_NATIVE_SHORT, H5S_ALL, H5S_ALL, H5P_DEFAULT, wdata_short);
CHECK(ret, FAIL, "H5Dwrite");
ret = H5Fflush(fid1, H5F_SCOPE_GLOBAL);
CHECK(ret, FAIL, "H5Fflush");
/* Try reading from the dataset (make certain our buffer is unmodified) */
ret = H5Dread(dset1, H5T_NATIVE_INT, sid1, H5S_ALL, H5P_DEFAULT, rdata_short);
CHECK(ret, FAIL, "H5Dread");
/* Check results */
for (i = 0; i < SPACE1_DIM2; i++) {
for (j = 0; j < SPACE1_DIM3; j++) {
if (rdata_short[i][j] != 7) {
H5_FAILED();
HDprintf("element [%d][%d] is %d but should have been 7\n", i, j, rdata_short[i][j]);
}
}
}
/* Select a hyperslab beyond its current dimension sizes, then try to write
* the data. It should fail. */
ret = H5Sselect_hyperslab(sid1, H5S_SELECT_SET, start, NULL, count, NULL);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
H5E_BEGIN_TRY
{
ret = H5Dwrite(dset1, H5T_NATIVE_INT, H5S_ALL, sid1, H5P_DEFAULT, wdata);
}
H5E_END_TRY;
VERIFY(ret, FAIL, "H5Dwrite");
/* Change to "none" selection */
ret = H5Sselect_none(sid1);
CHECK(ret, FAIL, "H5Sselect_none");
/* Select a point beyond the dimension size, then try to write the data.
* It should fail. */
coord[0][0] = 2;
coord[0][1] = 5;
coord[0][2] = 3;
ret = H5Sselect_elements(sid1, H5S_SELECT_SET, (size_t)1, (const hsize_t *)coord);
CHECK(ret, FAIL, "H5Sselect_elements");
H5E_BEGIN_TRY
{
ret = H5Dwrite(dset1, H5T_NATIVE_INT, H5S_ALL, sid1, H5P_DEFAULT, &val);
}
H5E_END_TRY;
VERIFY(ret, FAIL, "H5Dwrite");
/* Restore the selection to all */
ret = H5Sselect_all(sid1);
CHECK(ret, FAIL, "H5Sselect_all");
ret = H5Dclose(dset1);
CHECK(ret, FAIL, "H5Dclose");
/*=================== Chunked dataset ====================*/
plist_id = H5Pcreate(H5P_DATASET_CREATE);
CHECK(plist_id, FAIL, "H5Pcreate");
ret = H5Pset_chunk(plist_id, SPACE1_RANK, chunk_dims);
CHECK(ret, FAIL, "H5Pset_chunk");
/* ret = H5Pset_alloc_time(plist_id, alloc_time); */
/* CHECK(ret, FAIL, "H5Pset_alloc_time"); */
dset1 =
H5Dcreate2(fid1, BASICDATASET1, H5T_NATIVE_INT, sid_chunk, H5P_DEFAULT, plist_id, H5P_DEFAULT);
CHECK(dset1, FAIL, "H5Dcreate2");
/* Write "nothing" to the dataset */
ret = H5Dwrite(dset1, H5T_NATIVE_INT, H5S_ALL, H5S_ALL, H5P_DEFAULT, wdata);
CHECK(ret, FAIL, "H5Dwrite");
ret = H5Fflush(fid1, H5F_SCOPE_GLOBAL);
CHECK(ret, FAIL, "H5Fflush");
/* Try reading from the dataset (make certain our buffer is unmodified) */
ret = H5Dread(dset1, H5T_NATIVE_INT, H5S_ALL, H5S_ALL, H5P_DEFAULT, rdata);
CHECK(ret, FAIL, "H5Dread");
/* Check results */
for (i = 0; i < SPACE1_DIM2; i++)
for (j = 0; j < SPACE1_DIM3; j++) {
if (rdata[i][j] != 7) {
H5_FAILED();
HDprintf("element [%d][%d] is %d but should have been 7\n", i, j, rdata[i][j]);
}
}
/* Now extend the dataset to SPACE1_DIM1*SPACE1_DIM2*SPACE1_DIM3 and make sure
* we can write data to it */
extend_dims[0] = SPACE1_DIM1;
ret = H5Dset_extent(dset1, extend_dims);
CHECK(ret, FAIL, "H5Dset_extent");
ret = H5Dwrite(dset1, H5T_NATIVE_INT, H5S_ALL, H5S_ALL, H5P_DEFAULT, wdata_real);
CHECK(ret, FAIL, "H5Dwrite");
ret = H5Fflush(fid1, H5F_SCOPE_GLOBAL);
CHECK(ret, FAIL, "H5Fflush");
ret = H5Dread(dset1, H5T_NATIVE_INT, H5S_ALL, H5S_ALL, H5P_DEFAULT, rdata_real);
CHECK(ret, FAIL, "H5Dread");
/* Check results */
for (i = 0; i < SPACE1_DIM1; i++) {
for (j = 0; j < SPACE1_DIM2; j++) {
for (k = 0; k < SPACE1_DIM3; k++) {
if (rdata_real[i][j][k] != wdata_real[i][j][k]) {
H5_FAILED();
HDprintf("element [%d][%d][%d] is %d but should have been %d\n", i, j, k,
rdata_real[i][j][k], wdata_real[i][j][k]);
}
}
}
}
/* Now shrink the first dimension size of the dataset to 0 and make sure no data is in it */
extend_dims[0] = 0;
ret = H5Dset_extent(dset1, extend_dims);
CHECK(ret, FAIL, "H5Dset_extent");
ret = H5Fflush(fid1, H5F_SCOPE_GLOBAL);
CHECK(ret, FAIL, "H5Fflush");
/* Try reading from the dataset (make certain our buffer is unmodified) */
ret = H5Dread(dset1, H5T_NATIVE_INT, H5S_ALL, H5S_ALL, H5P_DEFAULT, rdata);
CHECK(ret, FAIL, "H5Dread");
/* Check results */
for (i = 0; i < SPACE1_DIM2; i++)
for (j = 0; j < SPACE1_DIM3; j++) {
if (rdata[i][j] != 7) {
H5_FAILED();
HDprintf("element [%d][%d] is %d but should have been 7\n", i, j, rdata[i][j]);
}
}
/* Now extend the first dimension size of the dataset to SPACE1_DIM1*3 past the maximal size.
* It is supposed to fail. */
extend_dims[0] = SPACE1_DIM1 * 3;
H5E_BEGIN_TRY
{
ret = H5Dset_extent(dset1, extend_dims);
}
H5E_END_TRY;
VERIFY(ret, FAIL, "H5Dset_extent");
ret = H5Pclose(plist_id);
CHECK(ret, FAIL, "H5Pclose");
ret = H5Dclose(dset1);
CHECK(ret, FAIL, "H5Dclose");
/*=================== Compact dataset =====================*/
plist_id = H5Pcreate(H5P_DATASET_CREATE);
CHECK(plist_id, FAIL, "H5Pcreate");
ret = H5Pset_layout(plist_id, H5D_COMPACT);
CHECK(ret, FAIL, "H5Pset_layout");
/* Don't set the allocation time for compact storage datasets (must be early) */
dset1 = H5Dcreate2(fid1, BASICDATASET2, H5T_NATIVE_INT, sid1, H5P_DEFAULT, plist_id, H5P_DEFAULT);
CHECK(dset1, FAIL, "H5Dcreate2");
/* Write "nothing" to the dataset */
ret = H5Dwrite(dset1, H5T_NATIVE_INT, H5S_ALL, H5S_ALL, H5P_DEFAULT, wdata);
CHECK(ret, FAIL, "H5Dwrite");
ret = H5Fflush(fid1, H5F_SCOPE_GLOBAL);
CHECK(ret, FAIL, "H5Fflush");
/* Try reading from the dataset (make certain our buffer is unmodified) */
ret = H5Dread(dset1, H5T_NATIVE_INT, H5S_ALL, H5S_ALL, H5P_DEFAULT, rdata);
CHECK(ret, FAIL, "H5Dread");
/* Check results */
for (i = 0; i < SPACE1_DIM2; i++)
for (j = 0; j < SPACE1_DIM3; j++) {
if (rdata[i][j] != 7) {
H5_FAILED();
HDprintf("element [%d][%d] is %d but should have been 7\n", i, j, rdata[i][j]);
}
}
ret = H5Pclose(plist_id);
CHECK(ret, FAIL, "H5Pclose");
ret = H5Dclose(dset1);
CHECK(ret, FAIL, "H5Dclose");
/*=========== Contiguous dataset with external storage ============*/
plist_id = H5Pcreate(H5P_DATASET_CREATE);
CHECK(plist_id, FAIL, "H5Pcreate");
/* Change the DCPL for contiguous layout with external storage. The size of the reserved
* space in the external file is the size of the dataset (zero because one dimension size is zero).
* There's no need to clean up the external file since the library doesn't create it
* until the data is written to it. */
ret = H5Pset_external(plist_id, EXTFILE_NAME, (off_t)0, (hsize_t)0);
CHECK(ret, FAIL, "H5Pset_external");
ret = H5Pset_alloc_time(plist_id, alloc_time);
CHECK(ret, FAIL, "H5Pset_alloc_time");
dset1 = H5Dcreate2(fid1, BASICDATASET3, H5T_NATIVE_INT, sid1, H5P_DEFAULT, plist_id, H5P_DEFAULT);
CHECK(dset1, FAIL, "H5Dcreate2");
/* Write "nothing" to the dataset */
ret = H5Dwrite(dset1, H5T_NATIVE_INT, sid1, H5S_ALL, H5P_DEFAULT, wdata);
CHECK(ret, FAIL, "H5Dwrite");
ret = H5Fflush(fid1, H5F_SCOPE_GLOBAL);
CHECK(ret, FAIL, "H5Fflush");
/* Try reading from the dataset (make certain our buffer is unmodified) */
ret = H5Dread(dset1, H5T_NATIVE_INT, sid1, H5S_ALL, H5P_DEFAULT, rdata);
CHECK(ret, FAIL, "H5Dread");
/* Check results */
for (i = 0; i < SPACE1_DIM2; i++) {
for (j = 0; j < SPACE1_DIM3; j++) {
if (rdata[i][j] != 7) {
H5_FAILED();
HDprintf("element [%d][%d] is %d but should have been 7\n", i, j, rdata[i][j]);
}
}
}
ret = H5Pclose(plist_id);
CHECK(ret, FAIL, "H5Pclose");
ret = H5Dclose(dset1);
CHECK(ret, FAIL, "H5Dclose");
/*=============== Create an attribute for the file ================*/
attr = H5Acreate2(fid1, NULLATTR, H5T_NATIVE_INT, sid1, H5P_DEFAULT, H5P_DEFAULT);
CHECK(attr, FAIL, "H5Acreate2");
/* Write "nothing" to the attribute */
ret = H5Awrite(attr, H5T_NATIVE_INT, wdata);
CHECK(ret, FAIL, "H5Awrite");
ret = H5Fflush(fid1, H5F_SCOPE_GLOBAL);
CHECK(ret, FAIL, "H5Fflush");
/* Try reading from the attribute (make certain our buffer is unmodified) */
ret = H5Aread(attr, H5T_NATIVE_INT, rdata);
CHECK(ret, FAIL, "H5Aread");
/* Check results */
for (i = 0; i < SPACE1_DIM2; i++) {
for (j = 0; j < SPACE1_DIM3; j++) {
if (rdata[i][j] != 7) {
H5_FAILED();
HDprintf("element [%d][%d] is %d but should have been 7\n", i, j, rdata[i][j]);
}
}
}
/* Write "nothing" to the attribute (with type conversion :-) */
ret = H5Awrite(attr, H5T_NATIVE_SHORT, wdata_short);
CHECK(ret, FAIL, "H5Awrite");
ret = H5Fflush(fid1, H5F_SCOPE_GLOBAL);
CHECK(ret, FAIL, "H5Fflush");
/* Try reading from the attribute (with type conversion :-) (make certain our buffer is unmodified) */
ret = H5Aread(attr, H5T_NATIVE_SHORT, rdata_short);
CHECK(ret, FAIL, "H5Aread");
/* Check results */
for (i = 0; i < SPACE1_DIM2; i++) {
for (j = 0; j < SPACE1_DIM3; j++) {
if (rdata_short[i][j] != 7) {
H5_FAILED();
HDprintf("element [%d][%d] is %d but should have been 7\n", i, j, rdata_short[i][j]);
}
}
}
/* Close attribute */
ret = H5Aclose(attr);
CHECK(ret, FAIL, "H5Aclose");
/*===============================================================
* Extend the dimension to make it a normal dataspace (3x15x13).
* Verify that data can be written to and read from the chunked
* dataset now.
*===============================================================
*/
dims1[0] = SPACE1_DIM1;
ret = H5Sset_extent_simple(sid_chunk, SPACE1_RANK, dims1, max_dims);
CHECK(ret, FAIL, "H5Sset_extent_simple");
nelem = H5Sget_simple_extent_npoints(sid_chunk);
CHECK(nelem, FAIL, "H5Sget_simple_extent_npoints");
VERIFY(nelem, SPACE1_DIM1 * SPACE1_DIM2 * SPACE1_DIM3, "H5Sget_simple_extent_npoints");
rank = H5Sget_simple_extent_ndims(sid_chunk);
CHECK(rank, FAIL, "H5Sget_simple_extent_ndims");
VERIFY(rank, SPACE1_RANK, "H5Sget_simple_extent_ndims");
rank = H5Sget_simple_extent_dims(sid_chunk, tdims, NULL);
CHECK(rank, FAIL, "H5Sget_simple_extent_dims");
VERIFY(HDmemcmp(tdims, dims1, SPACE1_RANK * sizeof(hsize_t)), 0, "H5Sget_simple_extent_dims");
/* Set it to chunked dataset */
plist_id = H5Pcreate(H5P_DATASET_CREATE);
CHECK(plist_id, FAIL, "H5Pcreate");
ret = H5Pset_chunk(plist_id, SPACE1_RANK, chunk_dims);
CHECK(ret, FAIL, "H5Pset_chunk");
ret = H5Pset_alloc_time(plist_id, alloc_time);
CHECK(ret, FAIL, "H5Pset_alloc_time");
dset1 =
H5Dcreate2(fid1, BASICDATASET4, H5T_NATIVE_INT, sid_chunk, H5P_DEFAULT, plist_id, H5P_DEFAULT);
CHECK(dset1, FAIL, "H5Dcreate2");
ret = H5Dwrite(dset1, H5T_NATIVE_INT, H5S_ALL, H5S_ALL, H5P_DEFAULT, wdata_real);
CHECK(ret, FAIL, "H5Dwrite");
ret = H5Fflush(fid1, H5F_SCOPE_GLOBAL);
CHECK(ret, FAIL, "H5Fflush");
ret = H5Dread(dset1, H5T_NATIVE_INT, H5S_ALL, H5S_ALL, H5P_DEFAULT, rdata_real);
CHECK(ret, FAIL, "H5Dread");
/* Check results */
for (i = 0; i < SPACE1_DIM1; i++) {
for (j = 0; j < SPACE1_DIM2; j++) {
for (k = 0; k < SPACE1_DIM3; k++) {
if (rdata_real[i][j][k] != wdata_real[i][j][k]) {
H5_FAILED();
HDprintf("element [%d][%d][%d] is %d but should have been %d\n", i, j, k,
rdata_real[i][j][k], wdata_real[i][j][k]);
}
}
}
}
ret = H5Pclose(plist_id);
CHECK(ret, FAIL, "H5Pclose");
ret = H5Dclose(dset1);
CHECK(ret, FAIL, "H5Dclose");
/* Change the dimensions to make them zero size again (0x0x0). Verify that
* no element is in the dataspace. */
dims1[0] = dims1[1] = dims1[2] = 0;
ret = H5Sset_extent_simple(sid_chunk, SPACE1_RANK, dims1, NULL);
CHECK(ret, FAIL, "H5Sset_extent_simple");
/* Check that the dataspace actually has 0 elements */
nelem = H5Sget_simple_extent_npoints(sid_chunk);
VERIFY(nelem, 0, "H5Sget_simple_extent_npoints");
/* Check that the dataspace was created with an "all" selection */
sel_type = H5Sget_select_type(sid_chunk);
VERIFY(sel_type, H5S_SEL_ALL, "H5Sget_select_type");
/* Check that the dataspace has 0 elements selected */
nelem = H5Sget_select_npoints(sid_chunk);
VERIFY(nelem, 0, "H5Sget_select_npoints");
/* Change to "none" selection */
ret = H5Sselect_none(sid_chunk);
CHECK(ret, FAIL, "H5Sselect_none");
/* Check that the dataspace has 0 elements selected */
nelem = H5Sget_select_npoints(sid_chunk);
VERIFY(nelem, 0, "H5Sget_select_npoints");
ret = H5Sclose(sid_chunk);
CHECK(ret, FAIL, "H5Sclose");
ret = H5Sclose(sid1);
CHECK(ret, FAIL, "H5Sclose");
ret = H5Fclose(fid1);
CHECK(ret, FAIL, "H5Fclose");
/*============================================
* Reopen the file to check the dataspace
*============================================
*/
fid1 = H5Fopen(ZEROFILE, H5F_ACC_RDONLY, H5P_DEFAULT);
CHECK(fid1, FAIL, "H5Fopen");
/* Reopen the chunked dataset */
dset1 = H5Dopen2(fid1, BASICDATASET1, H5P_DEFAULT);
CHECK(dset1, FAIL, "H5Dopen2");
/* Get the space of the dataset and query it */
sid1 = H5Dget_space(dset1);
CHECK(sid1, FAIL, "H5Dget_space");
/* Verify the class type of dataspace */
stype = H5Sget_simple_extent_type(sid1);
VERIFY(stype, H5S_SIMPLE, "H5Sget_simple_extent_type");
/* Verify there is zero element in the dataspace */
nelem = H5Sget_simple_extent_npoints(sid1);
VERIFY(nelem, 0, "H5Sget_simple_extent_npoints");
/* Verify the dimension sizes are correct */
rank = H5Sget_simple_extent_dims(sid1, tdims, NULL);
CHECK(rank, FAIL, "H5Sget_simple_extent_dims");
VERIFY(tdims[0], 0, "H5Sget_simple_extent_dims");
VERIFY(tdims[1], SPACE1_DIM2, "H5Sget_simple_extent_dims");
VERIFY(tdims[2], SPACE1_DIM3, "H5Sget_simple_extent_dims");
/* Try reading from the dataset (make certain our buffer is unmodified) */
ret = H5Dread(dset1, H5T_NATIVE_INT, H5S_ALL, H5S_ALL, H5P_DEFAULT, rdata);
CHECK(ret, FAIL, "H5Dread");
/* Check results */
for (i = 0; i < SPACE1_DIM2; i++) {
for (j = 0; j < SPACE1_DIM3; j++) {
if (rdata[i][j] != 7) {
H5_FAILED();
HDprintf("element [%d][%d] is %d but should have been 7\n", i, j, rdata[i][j]);
}
}
}
/* Close the dataset and its dataspace */
ret = H5Dclose(dset1);
CHECK(ret, FAIL, "H5Dclose");
ret = H5Sclose(sid1);
CHECK(ret, FAIL, "H5Sclose");
/* Open the attribute for the file */
attr = H5Aopen(fid1, NULLATTR, H5P_DEFAULT);
CHECK(attr, FAIL, "H5Aopen");
/* Get the space of the dataset */
attr_sid = H5Aget_space(attr);
CHECK(attr_sid, FAIL, "H5Aget_space");
/* Verify the class type of dataspace */
stype = H5Sget_simple_extent_type(attr_sid);
VERIFY(stype, H5S_SIMPLE, "H5Sget_simple_extent_type");
/* Verify there is zero element in the dataspace */
nelem = H5Sget_simple_extent_npoints(attr_sid);
VERIFY(nelem, 0, "H5Sget_simple_extent_npoints");
/* Try reading from the attribute (make certain our buffer is unmodified) */
ret = H5Aread(attr, H5T_NATIVE_SHORT, rdata_short);
CHECK(ret, FAIL, "H5Aread");
/* Check results */
for (i = 0; i < SPACE1_DIM2; i++) {
for (j = 0; j < SPACE1_DIM3; j++) {
if (rdata_short[i][j] != 7) {
H5_FAILED();
HDprintf("element [%d][%d] is %d but should have been 7\n", i, j, rdata_short[i][j]);
}
}
}
/* Close attribute */
ret = H5Aclose(attr);
CHECK(ret, FAIL, "H5Aclose");
/* Close the dataspace */
ret = H5Sclose(attr_sid);
CHECK(ret, FAIL, "H5Sclose");
ret = H5Fclose(fid1);
CHECK(ret, FAIL, "H5Fclose");
} /* end for */
} /* test_h5s_zero_dim() */
/****************************************************************
**
** test_h5s_encode(): Test H5S (dataspace) encoding and decoding.
**
** Note: See "RFC: H5Sencode/H5Sdecode Format Change".
**
****************************************************************/
static void
test_h5s_encode(H5F_libver_t low, H5F_libver_t high)
{
hid_t sid1, sid2, sid3; /* Dataspace ID */
hid_t decoded_sid1, decoded_sid2, decoded_sid3;
int rank; /* Logical rank of dataspace */
hid_t fapl = -1; /* File access property list ID */
hsize_t dims1[] = {SPACE1_DIM1, SPACE1_DIM2, SPACE1_DIM3};
size_t sbuf_size = 0, null_size = 0, scalar_size = 0;
unsigned char *sbuf = NULL, *null_sbuf = NULL, *scalar_buf = NULL;
hsize_t tdims[4]; /* Dimension array to test with */
hssize_t n; /* Number of dataspace elements */
hsize_t start[] = {0, 0, 0};
hsize_t stride[] = {2, 5, 3};
hsize_t count[] = {2, 2, 2};
hsize_t block[] = {1, 3, 1};
H5S_sel_type sel_type;
H5S_class_t space_type;
hssize_t nblocks;
hid_t ret_id; /* Generic hid_t return value */
herr_t ret; /* Generic return value */
/* Output message about test being performed */
MESSAGE(5, ("Testing Dataspace Encoding and Decoding\n"));
/*-------------------------------------------------------------------------
* Test encoding and decoding of simple dataspace and hyperslab selection.
*-------------------------------------------------------------------------
*/
/* Create the file access property list */
fapl = H5Pcreate(H5P_FILE_ACCESS);
CHECK(fapl, FAIL, "H5Pcreate");
/* Set low/high bounds in the fapl */
ret = H5Pset_libver_bounds(fapl, low, high);
CHECK(ret, FAIL, "H5Pset_libver_bounds");
/* Create the dataspace */
sid1 = H5Screate_simple(SPACE1_RANK, dims1, NULL);
CHECK(sid1, FAIL, "H5Screate_simple");
/* Set the hyperslab selection */
ret = H5Sselect_hyperslab(sid1, H5S_SELECT_SET, start, stride, count, block);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
/* Encode simple dataspace in a buffer with the fapl setting */
ret = H5Sencode2(sid1, NULL, &sbuf_size, fapl);
CHECK(ret, FAIL, "H5Sencode2");
if (sbuf_size > 0) {
sbuf = (unsigned char *)HDcalloc((size_t)1, sbuf_size);
CHECK_PTR(sbuf, "HDcalloc");
}
/* Try decoding bogus buffer */
H5E_BEGIN_TRY
{
ret_id = H5Sdecode(sbuf);
}
H5E_END_TRY;
VERIFY(ret_id, FAIL, "H5Sdecode");
/* Encode the simple dataspace in a buffer with the fapl setting */
ret = H5Sencode2(sid1, sbuf, &sbuf_size, fapl);
CHECK(ret, FAIL, "H5Sencode");
/* Decode from the dataspace buffer and return an object handle */
decoded_sid1 = H5Sdecode(sbuf);
CHECK(decoded_sid1, FAIL, "H5Sdecode");
/* Verify the decoded dataspace */
n = H5Sget_simple_extent_npoints(decoded_sid1);
CHECK(n, FAIL, "H5Sget_simple_extent_npoints");
VERIFY(n, SPACE1_DIM1 * SPACE1_DIM2 * SPACE1_DIM3, "H5Sget_simple_extent_npoints");
/* Retrieve and verify the dataspace rank */
rank = H5Sget_simple_extent_ndims(decoded_sid1);
CHECK(rank, FAIL, "H5Sget_simple_extent_ndims");
VERIFY(rank, SPACE1_RANK, "H5Sget_simple_extent_ndims");
/* Retrieve and verify the dataspace dimensions */
rank = H5Sget_simple_extent_dims(decoded_sid1, tdims, NULL);
CHECK(rank, FAIL, "H5Sget_simple_extent_dims");
VERIFY(HDmemcmp(tdims, dims1, SPACE1_RANK * sizeof(hsize_t)), 0, "H5Sget_simple_extent_dims");
/* Verify the type of dataspace selection */
sel_type = H5Sget_select_type(decoded_sid1);
VERIFY(sel_type, H5S_SEL_HYPERSLABS, "H5Sget_select_type");
/* Verify the number of hyperslab blocks */
nblocks = H5Sget_select_hyper_nblocks(decoded_sid1);
VERIFY(nblocks, 2 * 2 * 2, "H5Sget_select_hyper_nblocks");
/* Close the dataspaces */
ret = H5Sclose(sid1);
CHECK(ret, FAIL, "H5Sclose");
ret = H5Sclose(decoded_sid1);
CHECK(ret, FAIL, "H5Sclose");
/*-------------------------------------------------------------------------
* Test encoding and decoding of null dataspace.
*-------------------------------------------------------------------------
*/
sid2 = H5Screate(H5S_NULL);
CHECK(sid2, FAIL, "H5Screate");
/* Encode null dataspace in a buffer */
ret = H5Sencode2(sid2, NULL, &null_size, fapl);
CHECK(ret, FAIL, "H5Sencode");
if (null_size > 0) {
null_sbuf = (unsigned char *)HDcalloc((size_t)1, null_size);
CHECK_PTR(null_sbuf, "HDcalloc");
}
/* Encode the null dataspace in the buffer */
ret = H5Sencode2(sid2, null_sbuf, &null_size, fapl);
CHECK(ret, FAIL, "H5Sencode2");
/* Decode from the dataspace buffer and return an object handle */
decoded_sid2 = H5Sdecode(null_sbuf);
CHECK(decoded_sid2, FAIL, "H5Sdecode");
/* Verify the decoded dataspace type */
space_type = H5Sget_simple_extent_type(decoded_sid2);
VERIFY(space_type, H5S_NULL, "H5Sget_simple_extent_type");
/* Close the dataspaces */
ret = H5Sclose(sid2);
CHECK(ret, FAIL, "H5Sclose");
ret = H5Sclose(decoded_sid2);
CHECK(ret, FAIL, "H5Sclose");
/*-------------------------------------------------------------------------
* Test encoding and decoding of scalar dataspace.
*-------------------------------------------------------------------------
*/
/* Create scalar dataspace */
sid3 = H5Screate(H5S_SCALAR);
CHECK(sid3, FAIL, "H5Screate_simple");
/* Encode scalar dataspace in a buffer */
ret = H5Sencode2(sid3, NULL, &scalar_size, fapl);
CHECK(ret, FAIL, "H5Sencode");
if (scalar_size > 0) {
scalar_buf = (unsigned char *)HDcalloc((size_t)1, scalar_size);
CHECK_PTR(scalar_buf, "HDcalloc");
}
/* Encode the scalar dataspace in the buffer */
ret = H5Sencode2(sid3, scalar_buf, &scalar_size, fapl);
CHECK(ret, FAIL, "H5Sencode2");
/* Decode from the dataspace buffer and return an object handle */
decoded_sid3 = H5Sdecode(scalar_buf);
CHECK(decoded_sid3, FAIL, "H5Sdecode");
/* Verify extent type */
space_type = H5Sget_simple_extent_type(decoded_sid3);
VERIFY(space_type, H5S_SCALAR, "H5Sget_simple_extent_type");
/* Verify decoded dataspace */
n = H5Sget_simple_extent_npoints(decoded_sid3);
CHECK(n, FAIL, "H5Sget_simple_extent_npoints");
VERIFY(n, 1, "H5Sget_simple_extent_npoints");
/* Retrieve and verify the dataspace rank */
rank = H5Sget_simple_extent_ndims(decoded_sid3);
CHECK(rank, FAIL, "H5Sget_simple_extent_ndims");
VERIFY(rank, 0, "H5Sget_simple_extent_ndims");
/* Close the dataspaces */
ret = H5Sclose(sid3);
CHECK(ret, FAIL, "H5Sclose");
ret = H5Sclose(decoded_sid3);
CHECK(ret, FAIL, "H5Sclose");
/* Close the file access property list */
ret = H5Pclose(fapl);
CHECK(ret, FAIL, "H5Pclose");
/* Release resources */
if (sbuf)
HDfree(sbuf);
if (null_sbuf)
HDfree(null_sbuf);
if (scalar_buf)
HDfree(scalar_buf);
} /* test_h5s_encode() */
#ifndef H5_NO_DEPRECATED_SYMBOLS
/****************************************************************
**
** test_h5s_encode(): Test H5S (dataspace) encoding and decoding.
**
****************************************************************/
static void
test_h5s_encode1(void)
{
hid_t sid1, sid2, sid3; /* Dataspace ID */
hid_t decoded_sid1, decoded_sid2, decoded_sid3;
int rank; /* Logical rank of dataspace */
hsize_t dims1[] = {SPACE1_DIM1, SPACE1_DIM2, SPACE1_DIM3};
size_t sbuf_size = 0, null_size = 0, scalar_size = 0;
unsigned char *sbuf = NULL, *null_sbuf = NULL, *scalar_buf = NULL;
hsize_t tdims[4]; /* Dimension array to test with */
hssize_t n; /* Number of dataspace elements */
hsize_t start[] = {0, 0, 0};
hsize_t stride[] = {2, 5, 3};
hsize_t count[] = {2, 2, 2};
hsize_t block[] = {1, 3, 1};
H5S_sel_type sel_type;
H5S_class_t space_type;
hssize_t nblocks;
hid_t ret_id; /* Generic hid_t return value */
herr_t ret; /* Generic return value */
/* Output message about test being performed */
MESSAGE(5, ("Testing Dataspace Encoding (H5Sencode1) and Decoding\n"));
/*-------------------------------------------------------------------------
* Test encoding and decoding of simple dataspace and hyperslab selection.
*-------------------------------------------------------------------------
*/
/* Create the dataspace */
sid1 = H5Screate_simple(SPACE1_RANK, dims1, NULL);
CHECK(sid1, FAIL, "H5Screate_simple");
/* Set the hyperslab selection */
ret = H5Sselect_hyperslab(sid1, H5S_SELECT_SET, start, stride, count, block);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
/* Encode simple dataspace in a buffer with the fapl setting */
ret = H5Sencode1(sid1, NULL, &sbuf_size);
CHECK(ret, FAIL, "H5Sencode2");
if (sbuf_size > 0) {
sbuf = (unsigned char *)HDcalloc((size_t)1, sbuf_size);
CHECK_PTR(sbuf, "HDcalloc");
}
/* Try decoding bogus buffer */
H5E_BEGIN_TRY
{
ret_id = H5Sdecode(sbuf);
}
H5E_END_TRY;
VERIFY(ret_id, FAIL, "H5Sdecode");
/* Encode the simple dataspace in a buffer */
ret = H5Sencode1(sid1, sbuf, &sbuf_size);
CHECK(ret, FAIL, "H5Sencode");
/* Decode from the dataspace buffer and return an object handle */
decoded_sid1 = H5Sdecode(sbuf);
CHECK(decoded_sid1, FAIL, "H5Sdecode");
/* Verify the decoded dataspace */
n = H5Sget_simple_extent_npoints(decoded_sid1);
CHECK(n, FAIL, "H5Sget_simple_extent_npoints");
VERIFY(n, SPACE1_DIM1 * SPACE1_DIM2 * SPACE1_DIM3, "H5Sget_simple_extent_npoints");
/* Retrieve and verify the dataspace rank */
rank = H5Sget_simple_extent_ndims(decoded_sid1);
CHECK(rank, FAIL, "H5Sget_simple_extent_ndims");
VERIFY(rank, SPACE1_RANK, "H5Sget_simple_extent_ndims");
/* Retrieve and verify the dataspace dimensions */
rank = H5Sget_simple_extent_dims(decoded_sid1, tdims, NULL);
CHECK(rank, FAIL, "H5Sget_simple_extent_dims");
VERIFY(HDmemcmp(tdims, dims1, SPACE1_RANK * sizeof(hsize_t)), 0, "H5Sget_simple_extent_dims");
/* Verify the type of dataspace selection */
sel_type = H5Sget_select_type(decoded_sid1);
VERIFY(sel_type, H5S_SEL_HYPERSLABS, "H5Sget_select_type");
/* Verify the number of hyperslab blocks */
nblocks = H5Sget_select_hyper_nblocks(decoded_sid1);
VERIFY(nblocks, 2 * 2 * 2, "H5Sget_select_hyper_nblocks");
/* Close the dataspaces */
ret = H5Sclose(sid1);
CHECK(ret, FAIL, "H5Sclose");
ret = H5Sclose(decoded_sid1);
CHECK(ret, FAIL, "H5Sclose");
/*-------------------------------------------------------------------------
* Test encoding and decoding of null dataspace.
*-------------------------------------------------------------------------
*/
sid2 = H5Screate(H5S_NULL);
CHECK(sid2, FAIL, "H5Screate");
/* Encode null dataspace in a buffer */
ret = H5Sencode1(sid2, NULL, &null_size);
CHECK(ret, FAIL, "H5Sencode");
if (null_size > 0) {
null_sbuf = (unsigned char *)HDcalloc((size_t)1, null_size);
CHECK_PTR(null_sbuf, "HDcalloc");
}
/* Encode the null dataspace in the buffer */
ret = H5Sencode1(sid2, null_sbuf, &null_size);
CHECK(ret, FAIL, "H5Sencode2");
/* Decode from the dataspace buffer and return an object handle */
decoded_sid2 = H5Sdecode(null_sbuf);
CHECK(decoded_sid2, FAIL, "H5Sdecode");
/* Verify the decoded dataspace type */
space_type = H5Sget_simple_extent_type(decoded_sid2);
VERIFY(space_type, H5S_NULL, "H5Sget_simple_extent_type");
/* Close the dataspaces */
ret = H5Sclose(sid2);
CHECK(ret, FAIL, "H5Sclose");
ret = H5Sclose(decoded_sid2);
CHECK(ret, FAIL, "H5Sclose");
/*-------------------------------------------------------------------------
* Test encoding and decoding of scalar dataspace.
*-------------------------------------------------------------------------
*/
/* Create scalar dataspace */
sid3 = H5Screate(H5S_SCALAR);
CHECK(sid3, FAIL, "H5Screate");
/* Encode scalar dataspace in a buffer */
ret = H5Sencode1(sid3, NULL, &scalar_size);
CHECK(ret, FAIL, "H5Sencode");
if (scalar_size > 0) {
scalar_buf = (unsigned char *)HDcalloc((size_t)1, scalar_size);
CHECK_PTR(scalar_buf, "HDcalloc");
}
/* Encode the scalar dataspace in the buffer */
ret = H5Sencode1(sid3, scalar_buf, &scalar_size);
CHECK(ret, FAIL, "H5Sencode2");
/* Decode from the dataspace buffer and return an object handle */
decoded_sid3 = H5Sdecode(scalar_buf);
CHECK(decoded_sid3, FAIL, "H5Sdecode");
/* Verify extent type */
space_type = H5Sget_simple_extent_type(decoded_sid3);
VERIFY(space_type, H5S_SCALAR, "H5Sget_simple_extent_type");
/* Verify decoded dataspace */
n = H5Sget_simple_extent_npoints(decoded_sid3);
CHECK(n, FAIL, "H5Sget_simple_extent_npoints");
VERIFY(n, 1, "H5Sget_simple_extent_npoints");
/* Retrieve and verify the dataspace rank */
rank = H5Sget_simple_extent_ndims(decoded_sid3);
CHECK(rank, FAIL, "H5Sget_simple_extent_ndims");
VERIFY(rank, 0, "H5Sget_simple_extent_ndims");
/* Close the dataspaces */
ret = H5Sclose(sid3);
CHECK(ret, FAIL, "H5Sclose");
ret = H5Sclose(decoded_sid3);
CHECK(ret, FAIL, "H5Sclose");
/* Release resources */
if (sbuf)
HDfree(sbuf);
if (null_sbuf)
HDfree(null_sbuf);
if (scalar_buf)
HDfree(scalar_buf);
} /* test_h5s_encode1() */
#endif /* H5_NO_DEPRECATED_SYMBOLS */
/****************************************************************
**
** test_h5s_check_encoding():
** This is the helper routine to verify that H5Sencode2()
** works as specified in the RFC for the library format setting
** in the file access property list.
** See "RFC: H5Sencode/H5Sdeocde Format Change".
**
** This routine is used by:
** test_h5s_encode_regular_hyper()
** test_h5s_encode_irregular_hyper()
** test_h5s_encode_points()
**
****************************************************************/
static herr_t
test_h5s_check_encoding(hid_t in_fapl, hid_t in_sid, uint32_t expected_version, uint8_t expected_enc_size,
hbool_t expected_to_fail)
{
char *buf = NULL; /* Pointer to the encoded buffer */
size_t buf_size; /* Size of the encoded buffer */
hid_t d_sid = -1; /* The decoded dataspace ID */
htri_t check;
hsize_t in_low_bounds[1]; /* The low bounds for the selection for in_sid */
hsize_t in_high_bounds[1]; /* The high bounds for the selection for in_sid */
hsize_t d_low_bounds[1]; /* The low bounds for the selection for d_sid */
hsize_t d_high_bounds[1]; /* The high bounds for the selection for d_sid */
herr_t ret; /* Return value */
/* Get buffer size for encoding with the format setting in in_fapl */
H5E_BEGIN_TRY
{
ret = H5Sencode2(in_sid, NULL, &buf_size, in_fapl);
}
H5E_END_TRY
if (expected_to_fail) {
VERIFY(ret, FAIL, "H5Screate_simple");
}
else {
CHECK(ret, FAIL, "H5Sencode2");
/* Allocate the buffer for encoding */
buf = (char *)HDmalloc(buf_size);
CHECK_PTR(buf, "HDmalloc");
/* Encode according to the setting in in_fapl */
ret = H5Sencode2(in_sid, buf, &buf_size, in_fapl);
CHECK(ret, FAIL, "H5Sencode2");
/* Decode the buffer */
d_sid = H5Sdecode(buf);
CHECK(d_sid, FAIL, "H5Sdecode");
/* Verify the number of selected points for in_sid and d_sid */
VERIFY(H5Sget_select_npoints(in_sid), H5Sget_select_npoints(d_sid), "Compare npoints");
/* Verify if the two dataspace selections (in_sid, d_sid) are the same shape */
check = H5Sselect_shape_same(in_sid, d_sid);
VERIFY(check, TRUE, "H5Sselect_shape_same");
/* Compare the starting/ending coordinates of the bounding box for in_sid and d_sid */
ret = H5Sget_select_bounds(in_sid, in_low_bounds, in_high_bounds);
CHECK(ret, FAIL, "H5Sget_select_bounds");
ret = H5Sget_select_bounds(d_sid, d_low_bounds, d_high_bounds);
CHECK(ret, FAIL, "H5Sget_select_bounds");
VERIFY(in_low_bounds[0], d_low_bounds[0], "Compare selection low bounds");
VERIFY(in_high_bounds[0], d_high_bounds[0], "Compare selection high bounds");
/*
* See "RFC: H5Sencode/H5Sdeocde Format Change" for the verification of:
* H5S_SEL_POINTS:
* --the expected version for point selection info
* --the expected encoded size (version 2 points selection info)
* H5S_SEL_HYPERSLABS:
* --the expected version for hyperslab selection info
* --the expected encoded size (version 3 hyperslab selection info)
*/
if (H5Sget_select_type(in_sid) == H5S_SEL_POINTS) {
/* Verify the version */
VERIFY((uint32_t)buf[35], expected_version, "Version for point selection");
/* Verify the encoded size for version 2 */
if (expected_version == 2)
VERIFY((uint8_t)buf[39], expected_enc_size, "Encoded size of point selection info");
}
if (H5Sget_select_type(in_sid) == H5S_SEL_HYPERSLABS) {
/* Verify the version */
VERIFY((uint32_t)buf[35], expected_version, "Version for hyperslab selection info");
/* Verify the encoded size for version 3 */
if (expected_version == 3)
VERIFY((uint8_t)buf[40], expected_enc_size, "Encoded size of selection info");
} /* hyperslab selection */
ret = H5Sclose(d_sid);
CHECK(ret, FAIL, "H5Sclose");
if (buf)
HDfree(buf);
}
return (0);
} /* test_h5s_check_encoding */
/****************************************************************
**
** test_h5s_encode_regular_hyper():
** This test verifies that H5Sencode2() works as specified in
** the RFC for regular hyperslabs.
** See "RFC: H5Sencode/H5Sdeocde Format Change".
**
****************************************************************/
static void
test_h5s_encode_regular_hyper(H5F_libver_t low, H5F_libver_t high)
{
hid_t fapl = -1; /* File access property list ID */
hid_t sid = -1; /* Dataspace ID */
hsize_t numparticles = 8388608; /* Used to calculate dimension size */
unsigned num_dsets = 513; /* Used to calculate dimension size */
hsize_t total_particles = numparticles * num_dsets;
hsize_t vdsdims[1] = {total_particles}; /* Dimension size */
hsize_t start, stride, count, block; /* Selection info */
unsigned config; /* Testing configuration */
unsigned unlim; /* H5S_UNLIMITED setting or not */
herr_t ret; /* Generic return value */
uint32_t expected_version = 0; /* Expected version for selection info */
uint8_t expected_enc_size = 0; /* Expected encoded size for selection info */
/* Output message about test being performed */
MESSAGE(5, ("Testing Dataspace encoding of regular hyperslabs\n"));
/* Create the file access property list */
fapl = H5Pcreate(H5P_FILE_ACCESS);
CHECK(fapl, FAIL, "H5Pcreate");
/* Set the low/high bounds in the fapl */
ret = H5Pset_libver_bounds(fapl, low, high);
CHECK(ret, FAIL, "H5Pset_libver_bounds");
/* Create the dataspace */
sid = H5Screate_simple(1, vdsdims, NULL);
CHECK(sid, FAIL, "H5Screate_simple");
/* Testing with each configuration */
for (config = CONFIG_16; config <= CONFIG_32; config++) {
hbool_t expected_to_fail = FALSE;
/* Testing with unlimited or not */
for (unlim = 0; unlim <= 1; unlim++) {
start = 0;
count = unlim ? H5S_UNLIMITED : 2;
if ((high <= H5F_LIBVER_V18) && (unlim || config == CONFIG_32))
expected_to_fail = TRUE;
if (low >= H5F_LIBVER_V112)
expected_version = 3;
else if (config == CONFIG_16 && !unlim)
expected_version = 1;
else
expected_version = 2;
/* test 1 */
switch (config) {
case CONFIG_16:
stride = POWER16 - 1;
block = 4;
expected_enc_size = (uint8_t)(expected_version == 3 ? 2 : 4);
break;
case CONFIG_32:
stride = POWER32 - 1;
block = 4;
expected_enc_size = (uint8_t)(expected_version == 3 ? 4 : 8);
break;
default:
HDassert(0);
break;
} /* end switch */
/* Set the hyperslab selection */
ret = H5Sselect_hyperslab(sid, H5S_SELECT_SET, &start, &stride, &count, &block);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
/* Verify the version and encoded size expected for this configuration */
ret = test_h5s_check_encoding(fapl, sid, expected_version, expected_enc_size, expected_to_fail);
CHECK(ret, FAIL, "test_h5s_check_encoding");
/* test 2 */
switch (config) {
case CONFIG_16:
stride = POWER16 - 1;
block = POWER16 - 2;
expected_enc_size = (uint8_t)(expected_version == 3 ? 2 : 4);
break;
case CONFIG_32:
stride = POWER32 - 1;
block = POWER32 - 2;
expected_enc_size = (uint8_t)(expected_version == 3 ? 4 : 8);
break;
default:
HDassert(0);
break;
} /* end switch */
/* Set the hyperslab selection */
ret = H5Sselect_hyperslab(sid, H5S_SELECT_SET, &start, &stride, &count, &block);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
/* Verify the version and encoded size for this configuration */
ret = test_h5s_check_encoding(fapl, sid, expected_version, expected_enc_size, expected_to_fail);
CHECK(ret, FAIL, "test_h5s_check_encoding");
/* test 3 */
switch (config) {
case CONFIG_16:
stride = POWER16 - 1;
block = POWER16 - 1;
expected_enc_size = 4;
break;
case CONFIG_32:
stride = POWER32 - 1;
block = POWER32 - 1;
expected_enc_size = 8;
break;
default:
HDassert(0);
break;
}
/* Set the hyperslab selection */
ret = H5Sselect_hyperslab(sid, H5S_SELECT_SET, &start, &stride, &count, &block);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
/* Verify the version and encoded size expected for this configuration */
ret = test_h5s_check_encoding(fapl, sid, expected_version, expected_enc_size, expected_to_fail);
CHECK(ret, FAIL, "test_h5s_check_encoding");
/* test 4 */
switch (config) {
case CONFIG_16:
stride = POWER16;
block = POWER16 - 2;
expected_enc_size = 4;
break;
case CONFIG_32:
stride = POWER32;
block = POWER32 - 2;
expected_enc_size = 8;
break;
default:
HDassert(0);
break;
} /* end switch */
/* Set the hyperslab selection */
ret = H5Sselect_hyperslab(sid, H5S_SELECT_SET, &start, &stride, &count, &block);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
/* Verify the version and encoded size expected for this configuration */
ret = test_h5s_check_encoding(fapl, sid, expected_version, expected_enc_size, expected_to_fail);
CHECK(ret, FAIL, "test_h5s_check_encoding");
/* test 5 */
switch (config) {
case CONFIG_16:
stride = POWER16;
block = 1;
expected_enc_size = 4;
break;
case CONFIG_32:
stride = POWER32;
block = 1;
expected_enc_size = 8;
break;
default:
HDassert(0);
break;
}
/* Set the hyperslab selection */
ret = H5Sselect_hyperslab(sid, H5S_SELECT_SET, &start, &stride, &count, &block);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
/* Verify the version and encoded size expected for this configuration */
ret = test_h5s_check_encoding(fapl, sid, expected_version, expected_enc_size, expected_to_fail);
CHECK(ret, FAIL, "test_h5s_check_encoding");
} /* for unlim */
} /* for config */
ret = H5Sclose(sid);
CHECK(ret, FAIL, "H5Sclose");
ret = H5Pclose(fapl);
CHECK(ret, FAIL, "H5Pclose");
} /* test_h5s_encode_regular_hyper() */
/****************************************************************
**
** test_h5s_encode_irregular_hyper():
** This test verifies that H5Sencode2() works as specified in
** the RFC for irregular hyperslabs.
** See "RFC: H5Sencode/H5Sdeocde Format Change".
**
****************************************************************/
static void
test_h5s_encode_irregular_hyper(H5F_libver_t low, H5F_libver_t high)
{
hid_t fapl = -1; /* File access property list ID */
hid_t sid; /* Dataspace ID */
hsize_t numparticles = 8388608; /* Used to calculate dimension size */
unsigned num_dsets = 513; /* Used to calculate dimension size */
hsize_t total_particles = numparticles * num_dsets;
hsize_t vdsdims[1] = {total_particles}; /* Dimension size */
hsize_t start, stride, count, block; /* Selection info */
htri_t is_regular; /* Is this a regular hyperslab */
unsigned config; /* Testing configuration */
herr_t ret; /* Generic return value */
/* Output message about test being performed */
MESSAGE(5, ("Testing Dataspace encoding of irregular hyperslabs\n"));
/* Create the file access property list */
fapl = H5Pcreate(H5P_FILE_ACCESS);
CHECK(fapl, FAIL, "H5Pcreate");
/* Set the low/high bounds in the fapl */
ret = H5Pset_libver_bounds(fapl, low, high);
CHECK(ret, FAIL, "H5Pset_libver_bounds");
/* Create the dataspace */
sid = H5Screate_simple(1, vdsdims, NULL);
CHECK(sid, FAIL, "H5Screate_simple");
/* Testing with each configuration */
for (config = CONFIG_8; config <= CONFIG_32; config++) {
hbool_t expected_to_fail = FALSE; /* Whether H5Sencode2 is expected to fail */
uint32_t expected_version = 0; /* Expected version for selection info */
uint32_t expected_enc_size = 0; /* Expected encoded size for selection info */
start = 0;
count = 2;
block = 4;
/* H5Sencode2 is expected to fail for library v110 and below
when the selection exceeds the 32 bits integer limit */
if (high <= H5F_LIBVER_V110 && config == CONFIG_32)
expected_to_fail = TRUE;
if (low >= H5F_LIBVER_V112 || config == CONFIG_32)
expected_version = 3;
else
expected_version = 1;
switch (config) {
case CONFIG_8:
stride = POWER8 - 2;
break;
case CONFIG_16:
stride = POWER16 - 2;
break;
case CONFIG_32:
stride = POWER32 - 2;
break;
default:
HDassert(0);
break;
}
/* Set the hyperslab selection */
ret = H5Sselect_hyperslab(sid, H5S_SELECT_SET, &start, &stride, &count, &block);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
start = 8;
count = 5;
block = 2;
switch (config) {
case CONFIG_8:
stride = POWER8;
expected_enc_size = expected_version == 3 ? 2 : 4;
break;
case CONFIG_16:
stride = POWER16;
expected_enc_size = 4;
break;
case CONFIG_32:
stride = POWER32;
expected_enc_size = 8;
break;
default:
HDassert(0);
break;
}
/* Set the hyperslab selection */
ret = H5Sselect_hyperslab(sid, H5S_SELECT_OR, &start, &stride, &count, &block);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
/* Should be irregular hyperslab */
is_regular = H5Sis_regular_hyperslab(sid);
VERIFY(is_regular, FALSE, "H5Sis_regular_hyperslab");
/* Verify the version and encoded size expected for the configuration */
HDassert(expected_enc_size <= 255);
ret = test_h5s_check_encoding(fapl, sid, expected_version, (uint8_t)expected_enc_size,
expected_to_fail);
CHECK(ret, FAIL, "test_h5s_check_encoding");
} /* for config */
ret = H5Sclose(sid);
CHECK(ret, FAIL, "H5Sclose");
} /* test_h5s_encode_irregular_hyper() */
/****************************************************************
**
** test_h5s_encode_points():
** This test verifies that H5Sencode2() works as specified in
** the RFC for point selection.
** See "RFC: H5Sencode/H5Sdeocde Format Change".
**
****************************************************************/
static void
test_h5s_encode_points(H5F_libver_t low, H5F_libver_t high)
{
hid_t fapl = -1; /* File access property list ID */
hid_t sid; /* Dataspace ID */
hsize_t numparticles = 8388608; /* Used to calculate dimension size */
unsigned num_dsets = 513; /* used to calculate dimension size */
hsize_t total_particles = numparticles * num_dsets;
hsize_t vdsdims[1] = {total_particles}; /* Dimension size */
hsize_t coord[4]; /* The point coordinates */
herr_t ret; /* Generic return value */
hbool_t expected_to_fail = FALSE; /* Expected to fail or not */
uint32_t expected_version = 0; /* Expected version for selection info */
uint8_t expected_enc_size = 0; /* Expected encoded size of selection info */
/* Output message about test being performed */
MESSAGE(5, ("Testing Dataspace encoding of points selection\n"));
/* Create the file access property list */
fapl = H5Pcreate(H5P_FILE_ACCESS);
CHECK(fapl, FAIL, "H5Pcreate");
/* Set the low/high bounds in the fapl */
ret = H5Pset_libver_bounds(fapl, low, high);
CHECK(ret, FAIL, "H5Pset_libver_bounds");
/* Create the dataspace */
sid = H5Screate_simple(1, vdsdims, NULL);
CHECK(sid, FAIL, "H5Screate_simple");
/* test 1 */
coord[0] = 5;
coord[1] = 15;
coord[2] = POWER16;
coord[3] = 19;
ret = H5Sselect_elements(sid, H5S_SELECT_SET, (size_t)4, coord);
CHECK(ret, FAIL, "H5Sselect_elements");
expected_to_fail = FALSE;
expected_enc_size = 4;
expected_version = 1;
if (low >= H5F_LIBVER_V112)
expected_version = 2;
/* Verify the version and encoded size expected for the configuration */
ret = test_h5s_check_encoding(fapl, sid, expected_version, expected_enc_size, expected_to_fail);
CHECK(ret, FAIL, "test_h5s_check_encoding");
/* test 2 */
coord[0] = 5;
coord[1] = 15;
coord[2] = POWER32 - 1;
coord[3] = 19;
ret = H5Sselect_elements(sid, H5S_SELECT_SET, (size_t)4, coord);
CHECK(ret, FAIL, "H5Sselect_elements");
/* Expected result same as test 1 */
ret = test_h5s_check_encoding(fapl, sid, expected_version, expected_enc_size, expected_to_fail);
CHECK(ret, FAIL, "test_h5s_check_encoding");
/* test 3 */
if (high <= H5F_LIBVER_V110)
expected_to_fail = TRUE;
if (high >= H5F_LIBVER_V112) {
expected_version = 2;
expected_enc_size = 8;
}
coord[0] = 5;
coord[1] = 15;
coord[2] = POWER32 + 1;
coord[3] = 19;
ret = H5Sselect_elements(sid, H5S_SELECT_SET, (size_t)4, coord);
CHECK(ret, FAIL, "H5Sselect_elements");
/* Verify the version and encoded size expected for the configuration */
ret = test_h5s_check_encoding(fapl, sid, expected_version, expected_enc_size, expected_to_fail);
CHECK(ret, FAIL, "test_h5s_check_encoding");
/* Close the dataspace */
ret = H5Sclose(sid);
CHECK(ret, FAIL, "H5Sclose");
} /* test_h5s_encode_points() */
/****************************************************************
**
** test_h5s_encode_length():
** Test to verify HDFFV-10271 is fixed.
** Verify that version 2 hyperslab encoding length is correct.
**
** See "RFC: H5Sencode/H5Sdecode Format Change" for the
** description of the encoding format.
**
****************************************************************/
static void
test_h5s_encode_length(void)
{
hid_t sid; /* Dataspace ID */
hid_t decoded_sid; /* Dataspace ID from H5Sdecode2 */
size_t sbuf_size = 0; /* Buffer size for H5Sencode2/1 */
unsigned char *sbuf = NULL; /* Buffer for H5Sencode2/1 */
hsize_t dims[1] = {500}; /* Dimension size */
hsize_t start, count, block, stride; /* Hyperslab selection specifications */
herr_t ret; /* Generic return value */
/* Output message about test being performed */
MESSAGE(5, ("Testing Version 2 Hyperslab Encoding Length is correct\n"));
/* Create dataspace */
sid = H5Screate_simple(1, dims, NULL);
CHECK(sid, FAIL, "H5Screate_simple");
/* Setting H5S_UNLIMITED in count will use version 2 for hyperslab encoding */
start = 0;
stride = 10;
block = 4;
count = H5S_UNLIMITED;
/* Set hyperslab selection */
ret = H5Sselect_hyperslab(sid, H5S_SELECT_SET, &start, &stride, &count, &block);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
/* Encode simple dataspace in a buffer */
ret = H5Sencode2(sid, NULL, &sbuf_size, H5P_DEFAULT);
CHECK(ret, FAIL, "H5Sencode");
/* Allocate the buffer */
if (sbuf_size > 0) {
sbuf = (unsigned char *)HDcalloc((size_t)1, sbuf_size);
CHECK_PTR(sbuf, "H5Sencode2");
}
/* Encode the dataspace */
ret = H5Sencode2(sid, sbuf, &sbuf_size, H5P_DEFAULT);
CHECK(ret, FAIL, "H5Sencode");
/* Verify that length stored at this location in the buffer is correct */
VERIFY((uint32_t)sbuf[40], 36, "Length for encoding version 2");
VERIFY((uint32_t)sbuf[35], 2, "Hyperslab encoding version is 2");
/* Decode from the dataspace buffer and return an object handle */
decoded_sid = H5Sdecode(sbuf);
CHECK(decoded_sid, FAIL, "H5Sdecode");
/* Verify that the original and the decoded dataspace are equal */
VERIFY(H5Sget_select_npoints(sid), H5Sget_select_npoints(decoded_sid), "Compare npoints");
/* Close the decoded dataspace */
ret = H5Sclose(decoded_sid);
CHECK(ret, FAIL, "H5Sclose");
/* Free the buffer */
if (sbuf)
HDfree(sbuf);
/* Close the original dataspace */
ret = H5Sclose(sid);
CHECK(ret, FAIL, "H5Sclose");
} /* test_h5s_encode_length() */
/****************************************************************
**
** test_h5s_scalar_write(): Test scalar H5S (dataspace) writing code.
**
****************************************************************/
static void
test_h5s_scalar_write(void)
{
hid_t fid1; /* HDF5 File IDs */
hid_t dataset; /* Dataset ID */
hid_t sid1; /* Dataspace ID */
int rank; /* Logical rank of dataspace */
hsize_t tdims[4]; /* Dimension array to test with */
hssize_t n; /* Number of dataspace elements */
H5S_class_t ext_type; /* Extent type */
herr_t ret; /* Generic return value */
/* Output message about test being performed */
MESSAGE(5, ("Testing Scalar Dataspace Manipulation during Writing\n"));
/* Create file */
fid1 = H5Fcreate(DATAFILE, H5F_ACC_TRUNC, H5P_DEFAULT, H5P_DEFAULT);
CHECK(fid1, FAIL, "H5Fcreate");
/* Verify a non-zero rank fails with a NULL dimension. */
H5E_BEGIN_TRY
{
sid1 = H5Screate_simple(SPACE1_RANK, NULL, NULL);
}
H5E_END_TRY
VERIFY(sid1, FAIL, "H5Screate_simple");
/* Create scalar dataspace */
sid1 = H5Screate_simple(SPACE3_RANK, NULL, NULL);
CHECK(sid1, FAIL, "H5Screate_simple");
/* Retrieve the number of elements in the dataspace selection */
n = H5Sget_simple_extent_npoints(sid1);
CHECK(n, FAIL, "H5Sget_simple_extent_npoints");
VERIFY(n, 1, "H5Sget_simple_extent_npoints");
/* Get the dataspace rank */
rank = H5Sget_simple_extent_ndims(sid1);
CHECK(rank, FAIL, "H5Sget_simple_extent_ndims");
VERIFY(rank, SPACE3_RANK, "H5Sget_simple_extent_ndims");
/* Get the dataspace dimension sizes */
rank = H5Sget_simple_extent_dims(sid1, tdims, NULL);
VERIFY(rank, 0, "H5Sget_simple_extent_dims");
/* Verify extent type */
ext_type = H5Sget_simple_extent_type(sid1);
VERIFY(ext_type, H5S_SCALAR, "H5Sget_simple_extent_type");
/* Create a dataset */
dataset = H5Dcreate2(fid1, "Dataset1", H5T_NATIVE_UINT, sid1, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT);
CHECK(dataset, FAIL, "H5Dcreate2");
/* Write to the dataset */
ret = H5Dwrite(dataset, H5T_NATIVE_UINT, H5S_ALL, H5S_ALL, H5P_DEFAULT, &space3_data);
CHECK(ret, FAIL, "H5Dwrite");
/* Close Dataset */
ret = H5Dclose(dataset);
CHECK(ret, FAIL, "H5Dclose");
/* Close scalar dataspace */
ret = H5Sclose(sid1);
CHECK(ret, FAIL, "H5Sclose");
/* Close file */
ret = H5Fclose(fid1);
CHECK(ret, FAIL, "H5Fclose");
} /* test_h5s_scalar_write() */
/****************************************************************
**
** test_h5s_scalar_read(): Test scalar H5S (dataspace) reading code.
**
****************************************************************/
static void
test_h5s_scalar_read(void)
{
hid_t fid1; /* HDF5 File IDs */
hid_t dataset; /* Dataset ID */
hid_t sid1; /* Dataspace ID */
int rank; /* Logical rank of dataspace */
hsize_t tdims[4]; /* Dimension array to test with */
hssize_t n; /* Number of dataspace elements */
unsigned rdata; /* Scalar data read in */
herr_t ret; /* Generic return value */
H5S_class_t ext_type; /* Extent type */
/* Output message about test being performed */
MESSAGE(5, ("Testing Scalar Dataspace Manipulation during Reading\n"));
/* Create file */
fid1 = H5Fopen(DATAFILE, H5F_ACC_RDWR, H5P_DEFAULT);
CHECK(fid1, FAIL, "H5Fopen");
/* Create a dataset */
dataset = H5Dopen2(fid1, "Dataset1", H5P_DEFAULT);
CHECK(dataset, FAIL, "H5Dopen2");
sid1 = H5Dget_space(dataset);
CHECK(sid1, FAIL, "H5Dget_space");
n = H5Sget_simple_extent_npoints(sid1);
CHECK(n, FAIL, "H5Sget_simple_extent_npoints");
VERIFY(n, 1, "H5Sget_simple_extent_npoints");
rank = H5Sget_simple_extent_ndims(sid1);
CHECK(rank, FAIL, "H5Sget_simple_extent_ndims");
VERIFY(rank, SPACE3_RANK, "H5Sget_simple_extent_ndims");
rank = H5Sget_simple_extent_dims(sid1, tdims, NULL);
VERIFY(rank, 0, "H5Sget_simple_extent_dims");
/* Verify extent type */
ext_type = H5Sget_simple_extent_type(sid1);
VERIFY(ext_type, H5S_SCALAR, "H5Sget_simple_extent_type");
ret = H5Dread(dataset, H5T_NATIVE_UINT, H5S_ALL, H5S_ALL, H5P_DEFAULT, &rdata);
CHECK(ret, FAIL, "H5Dread");
VERIFY(rdata, space3_data, "H5Dread");
/* Close Dataset */
ret = H5Dclose(dataset);
CHECK(ret, FAIL, "H5Dclose");
/* Close scalar dataspace */
ret = H5Sclose(sid1);
CHECK(ret, FAIL, "H5Sclose");
/* Close file */
ret = H5Fclose(fid1);
CHECK(ret, FAIL, "H5Fclose");
} /* test_h5s_scalar_read() */
/****************************************************************
**
** test_h5s_compound_scalar_write(): Test scalar H5S (dataspace) writing for
** compound datatypes.
**
****************************************************************/
static void
test_h5s_compound_scalar_write(void)
{
hid_t fid1; /* HDF5 File IDs */
hid_t dataset; /* Dataset ID */
hid_t tid1; /* Attribute datatype ID */
hid_t sid1; /* Dataspace ID */
int rank; /* Logical rank of dataspace */
hsize_t tdims[4]; /* Dimension array to test with */
hssize_t n; /* Number of dataspace elements */
herr_t ret; /* Generic return value */
/* Output message about test being performed */
MESSAGE(5, ("Testing Scalar Dataspace Manipulation for Writing Compound Datatypes\n"));
/* Create file */
fid1 = H5Fcreate(DATAFILE, H5F_ACC_TRUNC, H5P_DEFAULT, H5P_DEFAULT);
CHECK(fid1, FAIL, "H5Fcreate");
/* Create the compound datatype. */
tid1 = H5Tcreate(H5T_COMPOUND, sizeof(struct space4_struct));
CHECK(tid1, FAIL, "H5Tcreate");
space4_field1_off = HOFFSET(struct space4_struct, c1);
ret = H5Tinsert(tid1, SPACE4_FIELDNAME1, space4_field1_off, H5T_NATIVE_SCHAR);
CHECK(ret, FAIL, "H5Tinsert");
space4_field2_off = HOFFSET(struct space4_struct, u);
ret = H5Tinsert(tid1, SPACE4_FIELDNAME2, space4_field2_off, H5T_NATIVE_UINT);
CHECK(ret, FAIL, "H5Tinsert");
space4_field3_off = HOFFSET(struct space4_struct, f);
ret = H5Tinsert(tid1, SPACE4_FIELDNAME3, space4_field3_off, H5T_NATIVE_FLOAT);
CHECK(ret, FAIL, "H5Tinsert");
space4_field4_off = HOFFSET(struct space4_struct, c2);
ret = H5Tinsert(tid1, SPACE4_FIELDNAME4, space4_field4_off, H5T_NATIVE_SCHAR);
CHECK(ret, FAIL, "H5Tinsert");
/* Create scalar dataspace */
sid1 = H5Screate_simple(SPACE3_RANK, NULL, NULL);
CHECK(sid1, FAIL, "H5Screate_simple");
n = H5Sget_simple_extent_npoints(sid1);
CHECK(n, FAIL, "H5Sget_simple_extent_npoints");
VERIFY(n, 1, "H5Sget_simple_extent_npoints");
rank = H5Sget_simple_extent_ndims(sid1);
CHECK(rank, FAIL, "H5Sget_simple_extent_ndims");
VERIFY(rank, SPACE3_RANK, "H5Sget_simple_extent_ndims");
rank = H5Sget_simple_extent_dims(sid1, tdims, NULL);
VERIFY(rank, 0, "H5Sget_simple_extent_dims");
/* Create a dataset */
dataset = H5Dcreate2(fid1, "Dataset1", tid1, sid1, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT);
CHECK(dataset, FAIL, "H5Dcreate2");
ret = H5Dwrite(dataset, tid1, H5S_ALL, H5S_ALL, H5P_DEFAULT, &space4_data);
CHECK(ret, FAIL, "H5Dwrite");
/* Close Dataset */
ret = H5Dclose(dataset);
CHECK(ret, FAIL, "H5Dclose");
/* Close compound datatype */
ret = H5Tclose(tid1);
CHECK(ret, FAIL, "H5Tclose");
/* Close scalar dataspace */
ret = H5Sclose(sid1);
CHECK(ret, FAIL, "H5Sclose");
/* Close file */
ret = H5Fclose(fid1);
CHECK(ret, FAIL, "H5Fclose");
} /* test_h5s_compound_scalar_write() */
/****************************************************************
**
** test_h5s_compound_scalar_read(): Test scalar H5S (dataspace) reading for
** compound datatypes.
**
****************************************************************/
static void
test_h5s_compound_scalar_read(void)
{
hid_t fid1; /* HDF5 File IDs */
hid_t dataset; /* Dataset ID */
hid_t sid1; /* Dataspace ID */
hid_t type; /* Datatype */
int rank; /* Logical rank of dataspace */
hsize_t tdims[4]; /* Dimension array to test with */
hssize_t n; /* Number of dataspace elements */
struct space4_struct rdata; /* Scalar data read in */
herr_t ret; /* Generic return value */
/* Output message about test being performed */
MESSAGE(5, ("Testing Scalar Dataspace Manipulation for Reading Compound Datatypes\n"));
/* Create file */
fid1 = H5Fopen(DATAFILE, H5F_ACC_RDWR, H5P_DEFAULT);
CHECK(fid1, FAIL, "H5Fopen");
/* Create a dataset */
dataset = H5Dopen2(fid1, "Dataset1", H5P_DEFAULT);
CHECK(dataset, FAIL, "H5Dopen2");
sid1 = H5Dget_space(dataset);
CHECK(sid1, FAIL, "H5Dget_space");
n = H5Sget_simple_extent_npoints(sid1);
CHECK(n, FAIL, "H5Sget_simple_extent_npoints");
VERIFY(n, 1, "H5Sget_simple_extent_npoints");
rank = H5Sget_simple_extent_ndims(sid1);
CHECK(rank, FAIL, "H5Sget_simple_extent_ndims");
VERIFY(rank, SPACE3_RANK, "H5Sget_simple_extent_ndims");
rank = H5Sget_simple_extent_dims(sid1, tdims, NULL);
VERIFY(rank, 0, "H5Sget_simple_extent_dims");
type = H5Dget_type(dataset);
CHECK(type, FAIL, "H5Dget_type");
ret = H5Dread(dataset, type, H5S_ALL, H5S_ALL, H5P_DEFAULT, &rdata);
CHECK(ret, FAIL, "H5Dread");
if (HDmemcmp(&space4_data, &rdata, sizeof(struct space4_struct)) != 0) {
HDprintf("scalar data different: space4_data.c1=%c, read_data4.c1=%c\n", space4_data.c1, rdata.c1);
HDprintf("scalar data different: space4_data.u=%u, read_data4.u=%u\n", space4_data.u, rdata.u);
HDprintf("scalar data different: space4_data.f=%f, read_data4.f=%f\n", (double)space4_data.f,
(double)rdata.f);
TestErrPrintf("scalar data different: space4_data.c1=%c, read_data4.c1=%c\n", space4_data.c1,
rdata.c2);
} /* end if */
/* Close datatype */
ret = H5Tclose(type);
CHECK(ret, FAIL, "H5Tclose");
/* Close Dataset */
ret = H5Dclose(dataset);
CHECK(ret, FAIL, "H5Dclose");
/* Close scalar dataspace */
ret = H5Sclose(sid1);
CHECK(ret, FAIL, "H5Sclose");
/* Close file */
ret = H5Fclose(fid1);
CHECK(ret, FAIL, "H5Fclose");
} /* end test_h5s_compound_scalar_read() */
/* Data array sizes for chunk test */
#define CHUNK_DATA_NX 50000
#define CHUNK_DATA_NY 3
/****************************************************************
**
** test_h5s_chunk(): Exercise chunked I/O, testing when data conversion
** is necessary and the entire chunk read in doesn't fit into the
** conversion buffer
**
****************************************************************/
static void
test_h5s_chunk(void)
{
herr_t status;
hid_t fileID, dsetID;
hid_t plist_id;
hid_t space_id;
hsize_t dims[2];
hsize_t csize[2];
double **chunk_data_dbl = NULL;
double *chunk_data_dbl_data = NULL;
float **chunk_data_flt = NULL;
float *chunk_data_flt_data = NULL;
int i, j;
/* Allocate memory */
chunk_data_dbl_data = (double *)HDcalloc(CHUNK_DATA_NX * CHUNK_DATA_NY, sizeof(double));
CHECK_PTR(chunk_data_dbl_data, "HDcalloc");
chunk_data_dbl = (double **)HDcalloc(CHUNK_DATA_NX, sizeof(chunk_data_dbl_data));
CHECK_PTR(chunk_data_dbl, "HDcalloc");
for (i = 0; i < CHUNK_DATA_NX; i++)
chunk_data_dbl[i] = chunk_data_dbl_data + (i * CHUNK_DATA_NY);
chunk_data_flt_data = (float *)HDcalloc(CHUNK_DATA_NX * CHUNK_DATA_NY, sizeof(float));
CHECK_PTR(chunk_data_flt_data, "HDcalloc");
chunk_data_flt = (float **)HDcalloc(CHUNK_DATA_NX, sizeof(chunk_data_flt_data));
CHECK_PTR(chunk_data_flt, "HDcalloc");
for (i = 0; i < CHUNK_DATA_NX; i++)
chunk_data_flt[i] = chunk_data_flt_data + (i * CHUNK_DATA_NY);
fileID = H5Fcreate(DATAFILE, H5F_ACC_TRUNC, H5P_DEFAULT, H5P_DEFAULT);
CHECK(fileID, FAIL, "H5Fcreate");
plist_id = H5Pcreate(H5P_DATASET_CREATE);
CHECK(plist_id, FAIL, "H5Pcreate");
csize[0] = CHUNK_DATA_NX;
csize[1] = CHUNK_DATA_NY;
status = H5Pset_chunk(plist_id, 2, csize);
CHECK(status, FAIL, "H5Pset_chunk");
/* Create the dataspace */
dims[0] = CHUNK_DATA_NX;
dims[1] = CHUNK_DATA_NY;
space_id = H5Screate_simple(2, dims, NULL);
CHECK(space_id, FAIL, "H5Screate_simple");
dsetID = H5Dcreate2(fileID, "coords", H5T_NATIVE_FLOAT, space_id, H5P_DEFAULT, plist_id, H5P_DEFAULT);
CHECK(dsetID, FAIL, "H5Dcreate2");
/* Initialize float array */
for (i = 0; i < CHUNK_DATA_NX; i++)
for (j = 0; j < CHUNK_DATA_NY; j++)
chunk_data_flt[i][j] = (float)(i + 1) * 2.5F - (float)j * 100.3F;
status = H5Dwrite(dsetID, H5T_NATIVE_FLOAT, H5S_ALL, H5S_ALL, H5P_DEFAULT, chunk_data_flt_data);
CHECK(status, FAIL, "H5Dwrite");
status = H5Pclose(plist_id);
CHECK(status, FAIL, "H5Pclose");
status = H5Sclose(space_id);
CHECK(status, FAIL, "H5Sclose");
status = H5Dclose(dsetID);
CHECK(status, FAIL, "H5Dclose");
status = H5Fclose(fileID);
CHECK(status, FAIL, "H5Fclose");
/* Reset/initialize the data arrays to read in */
HDmemset(chunk_data_dbl_data, 0, sizeof(double) * CHUNK_DATA_NX * CHUNK_DATA_NY);
HDmemset(chunk_data_flt_data, 0, sizeof(float) * CHUNK_DATA_NX * CHUNK_DATA_NY);
fileID = H5Fopen(DATAFILE, H5F_ACC_RDONLY, H5P_DEFAULT);
CHECK(fileID, FAIL, "H5Fopen");
dsetID = H5Dopen2(fileID, "coords", H5P_DEFAULT);
CHECK(dsetID, FAIL, "H5Dopen2");
status = H5Dread(dsetID, H5T_NATIVE_DOUBLE, H5S_ALL, H5S_ALL, H5P_DEFAULT, chunk_data_dbl_data);
CHECK(status, FAIL, "H5Dread");
status = H5Dread(dsetID, H5T_NATIVE_FLOAT, H5S_ALL, H5S_ALL, H5P_DEFAULT, chunk_data_flt_data);
CHECK(status, FAIL, "H5Dread");
status = H5Dclose(dsetID);
CHECK(status, FAIL, "H5Dclose");
status = H5Fclose(fileID);
CHECK(status, FAIL, "H5Fclose");
for (i = 0; i < CHUNK_DATA_NX; i++) {
for (j = 0; j < CHUNK_DATA_NY; j++) {
/* Check if the two values are within 0.001% range. */
if (!H5_DBL_REL_EQUAL(chunk_data_dbl[i][j], (double)chunk_data_flt[i][j], 0.00001))
TestErrPrintf("%u: chunk_data_dbl[%d][%d]=%e, chunk_data_flt[%d][%d]=%e\n",
(unsigned)__LINE__, i, j, chunk_data_dbl[i][j], i, j,
(double)chunk_data_flt[i][j]);
} /* end for */
} /* end for */
HDfree(chunk_data_dbl);
HDfree(chunk_data_dbl_data);
HDfree(chunk_data_flt);
HDfree(chunk_data_flt_data);
} /* test_h5s_chunk() */
/****************************************************************
**
** test_h5s_extent_equal(): Exercise extent comparison code
**
****************************************************************/
static void
test_h5s_extent_equal(void)
{
hid_t null_space; /* Null dataspace */
hid_t scalar_space; /* Scalar dataspace */
hid_t d1_space1, d1_space2, d1_space3, d1_space4; /* 1-D dataspaces */
hid_t d2_space1, d2_space2, d2_space3, d2_space4; /* 2-D dataspaces */
hid_t d3_space1, d3_space2, d3_space3, d3_space4; /* 3-D dataspaces */
hsize_t d1_dims1[1] = {10}, /* 1-D dimensions */
d1_dims2[1] = {20}, d1_dims3[1] = {H5S_UNLIMITED};
hsize_t d2_dims1[2] = {10, 10}, /* 2-D dimensions */
d2_dims2[2] = {20, 20}, d2_dims3[2] = {H5S_UNLIMITED, H5S_UNLIMITED};
hsize_t d3_dims1[3] = {10, 10, 10}, /* 3-D dimensions */
d3_dims2[3] = {20, 20, 20}, d3_dims3[3] = {H5S_UNLIMITED, H5S_UNLIMITED, H5S_UNLIMITED};
htri_t ext_equal; /* Whether two dataspace extents are equal */
herr_t ret; /* Generic error return */
/* Create dataspaces */
null_space = H5Screate(H5S_NULL);
CHECK(null_space, FAIL, "H5Screate");
scalar_space = H5Screate(H5S_SCALAR);
CHECK(scalar_space, FAIL, "H5Screate");
d1_space1 = H5Screate_simple(1, d1_dims1, NULL);
CHECK(d1_space1, FAIL, "H5Screate");
d1_space2 = H5Screate_simple(1, d1_dims2, NULL);
CHECK(d1_space2, FAIL, "H5Screate");
d1_space3 = H5Screate_simple(1, d1_dims1, d1_dims2);
CHECK(d1_space3, FAIL, "H5Screate");
d1_space4 = H5Screate_simple(1, d1_dims1, d1_dims3);
CHECK(d1_space4, FAIL, "H5Screate");
d2_space1 = H5Screate_simple(2, d2_dims1, NULL);
CHECK(d2_space1, FAIL, "H5Screate");
d2_space2 = H5Screate_simple(2, d2_dims2, NULL);
CHECK(d2_space2, FAIL, "H5Screate");
d2_space3 = H5Screate_simple(2, d2_dims1, d2_dims2);
CHECK(d2_space3, FAIL, "H5Screate");
d2_space4 = H5Screate_simple(2, d2_dims1, d2_dims3);
CHECK(d2_space4, FAIL, "H5Screate");
d3_space1 = H5Screate_simple(3, d3_dims1, NULL);
CHECK(d3_space1, FAIL, "H5Screate");
d3_space2 = H5Screate_simple(3, d3_dims2, NULL);
CHECK(d3_space2, FAIL, "H5Screate");
d3_space3 = H5Screate_simple(3, d3_dims1, d3_dims2);
CHECK(d3_space3, FAIL, "H5Screate");
d3_space4 = H5Screate_simple(3, d3_dims1, d3_dims3);
CHECK(d3_space4, FAIL, "H5Screate");
/* Compare all dataspace combinations */
/* Compare null dataspace against all others, including itself */
ext_equal = H5Sextent_equal(null_space, null_space);
VERIFY(ext_equal, TRUE, "H5Sextent_equal");
ext_equal = H5Sextent_equal(null_space, scalar_space);
VERIFY(ext_equal, FALSE, "H5Sextent_equal");
ext_equal = H5Sextent_equal(null_space, d1_space1);
VERIFY(ext_equal, FALSE, "H5Sextent_equal");
ext_equal = H5Sextent_equal(null_space, d1_space2);
VERIFY(ext_equal, FALSE, "H5Sextent_equal");
ext_equal = H5Sextent_equal(null_space, d1_space3);
VERIFY(ext_equal, FALSE, "H5Sextent_equal");
ext_equal = H5Sextent_equal(null_space, d1_space4);
VERIFY(ext_equal, FALSE, "H5Sextent_equal");
ext_equal = H5Sextent_equal(null_space, d2_space1);
VERIFY(ext_equal, FALSE, "H5Sextent_equal");
ext_equal = H5Sextent_equal(null_space, d2_space2);
VERIFY(ext_equal, FALSE, "H5Sextent_equal");
ext_equal = H5Sextent_equal(null_space, d2_space3);
VERIFY(ext_equal, FALSE, "H5Sextent_equal");
ext_equal = H5Sextent_equal(null_space, d2_space4);
VERIFY(ext_equal, FALSE, "H5Sextent_equal");
ext_equal = H5Sextent_equal(null_space, d3_space1);
VERIFY(ext_equal, FALSE, "H5Sextent_equal");
ext_equal = H5Sextent_equal(null_space, d3_space2);
VERIFY(ext_equal, FALSE, "H5Sextent_equal");
ext_equal = H5Sextent_equal(null_space, d3_space3);
VERIFY(ext_equal, FALSE, "H5Sextent_equal");
ext_equal = H5Sextent_equal(null_space, d3_space4);
VERIFY(ext_equal, FALSE, "H5Sextent_equal");
/* Compare scalar dataspace against all others, including itself */
ext_equal = H5Sextent_equal(scalar_space, null_space);
VERIFY(ext_equal, FALSE, "H5Sextent_equal");
ext_equal = H5Sextent_equal(scalar_space, scalar_space);
VERIFY(ext_equal, TRUE, "H5Sextent_equal");
ext_equal = H5Sextent_equal(scalar_space, d1_space1);
VERIFY(ext_equal, FALSE, "H5Sextent_equal");
ext_equal = H5Sextent_equal(scalar_space, d1_space2);
VERIFY(ext_equal, FALSE, "H5Sextent_equal");
ext_equal = H5Sextent_equal(scalar_space, d1_space3);
VERIFY(ext_equal, FALSE, "H5Sextent_equal");
ext_equal = H5Sextent_equal(scalar_space, d1_space4);
VERIFY(ext_equal, FALSE, "H5Sextent_equal");
ext_equal = H5Sextent_equal(scalar_space, d2_space1);
VERIFY(ext_equal, FALSE, "H5Sextent_equal");
ext_equal = H5Sextent_equal(scalar_space, d2_space2);
VERIFY(ext_equal, FALSE, "H5Sextent_equal");
ext_equal = H5Sextent_equal(scalar_space, d2_space3);
VERIFY(ext_equal, FALSE, "H5Sextent_equal");
ext_equal = H5Sextent_equal(scalar_space, d2_space4);
VERIFY(ext_equal, FALSE, "H5Sextent_equal");
ext_equal = H5Sextent_equal(scalar_space, d3_space1);
VERIFY(ext_equal, FALSE, "H5Sextent_equal");
ext_equal = H5Sextent_equal(scalar_space, d3_space2);
VERIFY(ext_equal, FALSE, "H5Sextent_equal");
ext_equal = H5Sextent_equal(scalar_space, d3_space3);
VERIFY(ext_equal, FALSE, "H5Sextent_equal");
ext_equal = H5Sextent_equal(scalar_space, d3_space4);
VERIFY(ext_equal, FALSE, "H5Sextent_equal");
/* Compare small 1-D dataspace w/no max. dims against all others, including itself */
ext_equal = H5Sextent_equal(d1_space1, null_space);
VERIFY(ext_equal, FALSE, "H5Sextent_equal");
ext_equal = H5Sextent_equal(d1_space1, scalar_space);
VERIFY(ext_equal, FALSE, "H5Sextent_equal");
ext_equal = H5Sextent_equal(d1_space1, d1_space1);
VERIFY(ext_equal, TRUE, "H5Sextent_equal");
ext_equal = H5Sextent_equal(d1_space1, d1_space2);
VERIFY(ext_equal, FALSE, "H5Sextent_equal");
ext_equal = H5Sextent_equal(d1_space1, d1_space3);
VERIFY(ext_equal, FALSE, "H5Sextent_equal");
ext_equal = H5Sextent_equal(d1_space1, d1_space4);
VERIFY(ext_equal, FALSE, "H5Sextent_equal");
ext_equal = H5Sextent_equal(d1_space1, d2_space1);
VERIFY(ext_equal, FALSE, "H5Sextent_equal");
ext_equal = H5Sextent_equal(d1_space1, d2_space2);
VERIFY(ext_equal, FALSE, "H5Sextent_equal");
ext_equal = H5Sextent_equal(d1_space1, d2_space3);
VERIFY(ext_equal, FALSE, "H5Sextent_equal");
ext_equal = H5Sextent_equal(d1_space1, d2_space4);
VERIFY(ext_equal, FALSE, "H5Sextent_equal");
ext_equal = H5Sextent_equal(d1_space1, d3_space1);
VERIFY(ext_equal, FALSE, "H5Sextent_equal");
ext_equal = H5Sextent_equal(d1_space1, d3_space2);
VERIFY(ext_equal, FALSE, "H5Sextent_equal");
ext_equal = H5Sextent_equal(d1_space1, d3_space3);
VERIFY(ext_equal, FALSE, "H5Sextent_equal");
ext_equal = H5Sextent_equal(d1_space1, d3_space4);
VERIFY(ext_equal, FALSE, "H5Sextent_equal");
/* Compare larger 1-D dataspace w/no max. dims against all others, including itself */
ext_equal = H5Sextent_equal(d1_space2, null_space);
VERIFY(ext_equal, FALSE, "H5Sextent_equal");
ext_equal = H5Sextent_equal(d1_space2, scalar_space);
VERIFY(ext_equal, FALSE, "H5Sextent_equal");
ext_equal = H5Sextent_equal(d1_space2, d1_space1);
VERIFY(ext_equal, FALSE, "H5Sextent_equal");
ext_equal = H5Sextent_equal(d1_space2, d1_space2);
VERIFY(ext_equal, TRUE, "H5Sextent_equal");
ext_equal = H5Sextent_equal(d1_space2, d1_space3);
VERIFY(ext_equal, FALSE, "H5Sextent_equal");
ext_equal = H5Sextent_equal(d1_space2, d1_space4);
VERIFY(ext_equal, FALSE, "H5Sextent_equal");
ext_equal = H5Sextent_equal(d1_space2, d2_space1);
VERIFY(ext_equal, FALSE, "H5Sextent_equal");
ext_equal = H5Sextent_equal(d1_space2, d2_space2);
VERIFY(ext_equal, FALSE, "H5Sextent_equal");
ext_equal = H5Sextent_equal(d1_space2, d2_space3);
VERIFY(ext_equal, FALSE, "H5Sextent_equal");
ext_equal = H5Sextent_equal(d1_space2, d2_space4);
VERIFY(ext_equal, FALSE, "H5Sextent_equal");
ext_equal = H5Sextent_equal(d1_space2, d3_space1);
VERIFY(ext_equal, FALSE, "H5Sextent_equal");
ext_equal = H5Sextent_equal(d1_space2, d3_space2);
VERIFY(ext_equal, FALSE, "H5Sextent_equal");
ext_equal = H5Sextent_equal(d1_space2, d3_space3);
VERIFY(ext_equal, FALSE, "H5Sextent_equal");
ext_equal = H5Sextent_equal(d1_space2, d3_space4);
VERIFY(ext_equal, FALSE, "H5Sextent_equal");
/* Compare small 1-D dataspace w/fixed max. dims against all others, including itself */
ext_equal = H5Sextent_equal(d1_space3, null_space);
VERIFY(ext_equal, FALSE, "H5Sextent_equal");
ext_equal = H5Sextent_equal(d1_space3, scalar_space);
VERIFY(ext_equal, FALSE, "H5Sextent_equal");
ext_equal = H5Sextent_equal(d1_space3, d1_space1);
VERIFY(ext_equal, FALSE, "H5Sextent_equal");
ext_equal = H5Sextent_equal(d1_space3, d1_space2);
VERIFY(ext_equal, FALSE, "H5Sextent_equal");
ext_equal = H5Sextent_equal(d1_space3, d1_space3);
VERIFY(ext_equal, TRUE, "H5Sextent_equal");
ext_equal = H5Sextent_equal(d1_space3, d1_space4);
VERIFY(ext_equal, FALSE, "H5Sextent_equal");
ext_equal = H5Sextent_equal(d1_space3, d2_space1);
VERIFY(ext_equal, FALSE, "H5Sextent_equal");
ext_equal = H5Sextent_equal(d1_space3, d2_space2);
VERIFY(ext_equal, FALSE, "H5Sextent_equal");
ext_equal = H5Sextent_equal(d1_space3, d2_space3);
VERIFY(ext_equal, FALSE, "H5Sextent_equal");
ext_equal = H5Sextent_equal(d1_space3, d2_space4);
VERIFY(ext_equal, FALSE, "H5Sextent_equal");
ext_equal = H5Sextent_equal(d1_space3, d3_space1);
VERIFY(ext_equal, FALSE, "H5Sextent_equal");
ext_equal = H5Sextent_equal(d1_space3, d3_space2);
VERIFY(ext_equal, FALSE, "H5Sextent_equal");
ext_equal = H5Sextent_equal(d1_space3, d3_space3);
VERIFY(ext_equal, FALSE, "H5Sextent_equal");
ext_equal = H5Sextent_equal(d1_space3, d3_space4);
VERIFY(ext_equal, FALSE, "H5Sextent_equal");
/* Compare small 1-D dataspace w/unlimited max. dims against all others, including itself */
ext_equal = H5Sextent_equal(d1_space4, null_space);
VERIFY(ext_equal, FALSE, "H5Sextent_equal");
ext_equal = H5Sextent_equal(d1_space4, scalar_space);
VERIFY(ext_equal, FALSE, "H5Sextent_equal");
ext_equal = H5Sextent_equal(d1_space4, d1_space1);
VERIFY(ext_equal, FALSE, "H5Sextent_equal");
ext_equal = H5Sextent_equal(d1_space4, d1_space2);
VERIFY(ext_equal, FALSE, "H5Sextent_equal");
ext_equal = H5Sextent_equal(d1_space4, d1_space3);
VERIFY(ext_equal, FALSE, "H5Sextent_equal");
ext_equal = H5Sextent_equal(d1_space4, d1_space4);
VERIFY(ext_equal, TRUE, "H5Sextent_equal");
ext_equal = H5Sextent_equal(d1_space4, d2_space1);
VERIFY(ext_equal, FALSE, "H5Sextent_equal");
ext_equal = H5Sextent_equal(d1_space4, d2_space2);
VERIFY(ext_equal, FALSE, "H5Sextent_equal");
ext_equal = H5Sextent_equal(d1_space4, d2_space3);
VERIFY(ext_equal, FALSE, "H5Sextent_equal");
ext_equal = H5Sextent_equal(d1_space4, d2_space4);
VERIFY(ext_equal, FALSE, "H5Sextent_equal");
ext_equal = H5Sextent_equal(d1_space4, d3_space1);
VERIFY(ext_equal, FALSE, "H5Sextent_equal");
ext_equal = H5Sextent_equal(d1_space4, d3_space2);
VERIFY(ext_equal, FALSE, "H5Sextent_equal");
ext_equal = H5Sextent_equal(d1_space4, d3_space3);
VERIFY(ext_equal, FALSE, "H5Sextent_equal");
ext_equal = H5Sextent_equal(d1_space4, d3_space4);
VERIFY(ext_equal, FALSE, "H5Sextent_equal");
/* Compare small 2-D dataspace w/no max. dims against all others, including itself */
ext_equal = H5Sextent_equal(d2_space1, null_space);
VERIFY(ext_equal, FALSE, "H5Sextent_equal");
ext_equal = H5Sextent_equal(d2_space1, scalar_space);
VERIFY(ext_equal, FALSE, "H5Sextent_equal");
ext_equal = H5Sextent_equal(d2_space1, d1_space1);
VERIFY(ext_equal, FALSE, "H5Sextent_equal");
ext_equal = H5Sextent_equal(d2_space1, d1_space2);
VERIFY(ext_equal, FALSE, "H5Sextent_equal");
ext_equal = H5Sextent_equal(d2_space1, d1_space3);
VERIFY(ext_equal, FALSE, "H5Sextent_equal");
ext_equal = H5Sextent_equal(d2_space1, d1_space4);
VERIFY(ext_equal, FALSE, "H5Sextent_equal");
ext_equal = H5Sextent_equal(d2_space1, d2_space1);
VERIFY(ext_equal, TRUE, "H5Sextent_equal");
ext_equal = H5Sextent_equal(d2_space1, d2_space2);
VERIFY(ext_equal, FALSE, "H5Sextent_equal");
ext_equal = H5Sextent_equal(d2_space1, d2_space3);
VERIFY(ext_equal, FALSE, "H5Sextent_equal");
ext_equal = H5Sextent_equal(d2_space1, d2_space4);
VERIFY(ext_equal, FALSE, "H5Sextent_equal");
ext_equal = H5Sextent_equal(d2_space1, d3_space1);
VERIFY(ext_equal, FALSE, "H5Sextent_equal");
ext_equal = H5Sextent_equal(d2_space1, d3_space2);
VERIFY(ext_equal, FALSE, "H5Sextent_equal");
ext_equal = H5Sextent_equal(d2_space1, d3_space3);
VERIFY(ext_equal, FALSE, "H5Sextent_equal");
ext_equal = H5Sextent_equal(d2_space1, d3_space4);
VERIFY(ext_equal, FALSE, "H5Sextent_equal");
/* Compare larger 2-D dataspace w/no max. dims against all others, including itself */
ext_equal = H5Sextent_equal(d2_space2, null_space);
VERIFY(ext_equal, FALSE, "H5Sextent_equal");
ext_equal = H5Sextent_equal(d2_space2, scalar_space);
VERIFY(ext_equal, FALSE, "H5Sextent_equal");
ext_equal = H5Sextent_equal(d2_space2, d1_space1);
VERIFY(ext_equal, FALSE, "H5Sextent_equal");
ext_equal = H5Sextent_equal(d2_space2, d1_space2);
VERIFY(ext_equal, FALSE, "H5Sextent_equal");
ext_equal = H5Sextent_equal(d2_space2, d1_space3);
VERIFY(ext_equal, FALSE, "H5Sextent_equal");
ext_equal = H5Sextent_equal(d2_space2, d1_space4);
VERIFY(ext_equal, FALSE, "H5Sextent_equal");
ext_equal = H5Sextent_equal(d2_space2, d2_space1);
VERIFY(ext_equal, FALSE, "H5Sextent_equal");
ext_equal = H5Sextent_equal(d2_space2, d2_space2);
VERIFY(ext_equal, TRUE, "H5Sextent_equal");
ext_equal = H5Sextent_equal(d2_space2, d2_space3);
VERIFY(ext_equal, FALSE, "H5Sextent_equal");
ext_equal = H5Sextent_equal(d2_space2, d2_space4);
VERIFY(ext_equal, FALSE, "H5Sextent_equal");
ext_equal = H5Sextent_equal(d2_space2, d3_space1);
VERIFY(ext_equal, FALSE, "H5Sextent_equal");
ext_equal = H5Sextent_equal(d2_space2, d3_space2);
VERIFY(ext_equal, FALSE, "H5Sextent_equal");
ext_equal = H5Sextent_equal(d2_space2, d3_space3);
VERIFY(ext_equal, FALSE, "H5Sextent_equal");
ext_equal = H5Sextent_equal(d2_space2, d3_space4);
VERIFY(ext_equal, FALSE, "H5Sextent_equal");
/* Compare small 2-D dataspace w/fixed max. dims against all others, including itself */
ext_equal = H5Sextent_equal(d2_space3, null_space);
VERIFY(ext_equal, FALSE, "H5Sextent_equal");
ext_equal = H5Sextent_equal(d2_space3, scalar_space);
VERIFY(ext_equal, FALSE, "H5Sextent_equal");
ext_equal = H5Sextent_equal(d2_space3, d1_space1);
VERIFY(ext_equal, FALSE, "H5Sextent_equal");
ext_equal = H5Sextent_equal(d2_space3, d1_space2);
VERIFY(ext_equal, FALSE, "H5Sextent_equal");
ext_equal = H5Sextent_equal(d2_space3, d1_space3);
VERIFY(ext_equal, FALSE, "H5Sextent_equal");
ext_equal = H5Sextent_equal(d2_space3, d1_space4);
VERIFY(ext_equal, FALSE, "H5Sextent_equal");
ext_equal = H5Sextent_equal(d2_space3, d2_space1);
VERIFY(ext_equal, FALSE, "H5Sextent_equal");
ext_equal = H5Sextent_equal(d2_space3, d2_space2);
VERIFY(ext_equal, FALSE, "H5Sextent_equal");
ext_equal = H5Sextent_equal(d2_space3, d2_space3);
VERIFY(ext_equal, TRUE, "H5Sextent_equal");
ext_equal = H5Sextent_equal(d2_space3, d2_space4);
VERIFY(ext_equal, FALSE, "H5Sextent_equal");
ext_equal = H5Sextent_equal(d2_space3, d3_space1);
VERIFY(ext_equal, FALSE, "H5Sextent_equal");
ext_equal = H5Sextent_equal(d2_space3, d3_space2);
VERIFY(ext_equal, FALSE, "H5Sextent_equal");
ext_equal = H5Sextent_equal(d2_space3, d3_space3);
VERIFY(ext_equal, FALSE, "H5Sextent_equal");
ext_equal = H5Sextent_equal(d2_space3, d3_space4);
VERIFY(ext_equal, FALSE, "H5Sextent_equal");
/* Compare small 2-D dataspace w/unlimited max. dims against all others, including itself */
ext_equal = H5Sextent_equal(d2_space4, null_space);
VERIFY(ext_equal, FALSE, "H5Sextent_equal");
ext_equal = H5Sextent_equal(d2_space4, scalar_space);
VERIFY(ext_equal, FALSE, "H5Sextent_equal");
ext_equal = H5Sextent_equal(d2_space4, d1_space1);
VERIFY(ext_equal, FALSE, "H5Sextent_equal");
ext_equal = H5Sextent_equal(d2_space4, d1_space2);
VERIFY(ext_equal, FALSE, "H5Sextent_equal");
ext_equal = H5Sextent_equal(d2_space4, d1_space3);
VERIFY(ext_equal, FALSE, "H5Sextent_equal");
ext_equal = H5Sextent_equal(d2_space4, d1_space4);
VERIFY(ext_equal, FALSE, "H5Sextent_equal");
ext_equal = H5Sextent_equal(d2_space4, d2_space1);
VERIFY(ext_equal, FALSE, "H5Sextent_equal");
ext_equal = H5Sextent_equal(d2_space4, d2_space2);
VERIFY(ext_equal, FALSE, "H5Sextent_equal");
ext_equal = H5Sextent_equal(d2_space4, d2_space3);
VERIFY(ext_equal, FALSE, "H5Sextent_equal");
ext_equal = H5Sextent_equal(d2_space4, d2_space4);
VERIFY(ext_equal, TRUE, "H5Sextent_equal");
ext_equal = H5Sextent_equal(d2_space4, d3_space1);
VERIFY(ext_equal, FALSE, "H5Sextent_equal");
ext_equal = H5Sextent_equal(d2_space4, d3_space2);
VERIFY(ext_equal, FALSE, "H5Sextent_equal");
ext_equal = H5Sextent_equal(d2_space4, d3_space3);
VERIFY(ext_equal, FALSE, "H5Sextent_equal");
ext_equal = H5Sextent_equal(d2_space4, d3_space4);
VERIFY(ext_equal, FALSE, "H5Sextent_equal");
/* Compare small 3-D dataspace w/no max. dims against all others, including itself */
ext_equal = H5Sextent_equal(d3_space1, null_space);
VERIFY(ext_equal, FALSE, "H5Sextent_equal");
ext_equal = H5Sextent_equal(d3_space1, scalar_space);
VERIFY(ext_equal, FALSE, "H5Sextent_equal");
ext_equal = H5Sextent_equal(d3_space1, d1_space1);
VERIFY(ext_equal, FALSE, "H5Sextent_equal");
ext_equal = H5Sextent_equal(d3_space1, d1_space2);
VERIFY(ext_equal, FALSE, "H5Sextent_equal");
ext_equal = H5Sextent_equal(d3_space1, d1_space3);
VERIFY(ext_equal, FALSE, "H5Sextent_equal");
ext_equal = H5Sextent_equal(d3_space1, d1_space4);
VERIFY(ext_equal, FALSE, "H5Sextent_equal");
ext_equal = H5Sextent_equal(d3_space1, d2_space1);
VERIFY(ext_equal, FALSE, "H5Sextent_equal");
ext_equal = H5Sextent_equal(d3_space1, d2_space2);
VERIFY(ext_equal, FALSE, "H5Sextent_equal");
ext_equal = H5Sextent_equal(d3_space1, d2_space3);
VERIFY(ext_equal, FALSE, "H5Sextent_equal");
ext_equal = H5Sextent_equal(d3_space1, d2_space4);
VERIFY(ext_equal, FALSE, "H5Sextent_equal");
ext_equal = H5Sextent_equal(d3_space1, d3_space1);
VERIFY(ext_equal, TRUE, "H5Sextent_equal");
ext_equal = H5Sextent_equal(d3_space1, d3_space2);
VERIFY(ext_equal, FALSE, "H5Sextent_equal");
ext_equal = H5Sextent_equal(d3_space1, d3_space3);
VERIFY(ext_equal, FALSE, "H5Sextent_equal");
ext_equal = H5Sextent_equal(d3_space1, d3_space4);
VERIFY(ext_equal, FALSE, "H5Sextent_equal");
/* Compare larger 2-D dataspace w/no max. dims against all others, including itself */
ext_equal = H5Sextent_equal(d3_space2, null_space);
VERIFY(ext_equal, FALSE, "H5Sextent_equal");
ext_equal = H5Sextent_equal(d3_space2, scalar_space);
VERIFY(ext_equal, FALSE, "H5Sextent_equal");
ext_equal = H5Sextent_equal(d3_space2, d1_space1);
VERIFY(ext_equal, FALSE, "H5Sextent_equal");
ext_equal = H5Sextent_equal(d3_space2, d1_space2);
VERIFY(ext_equal, FALSE, "H5Sextent_equal");
ext_equal = H5Sextent_equal(d3_space2, d1_space3);
VERIFY(ext_equal, FALSE, "H5Sextent_equal");
ext_equal = H5Sextent_equal(d3_space2, d1_space4);
VERIFY(ext_equal, FALSE, "H5Sextent_equal");
ext_equal = H5Sextent_equal(d3_space2, d2_space1);
VERIFY(ext_equal, FALSE, "H5Sextent_equal");
ext_equal = H5Sextent_equal(d3_space2, d2_space2);
VERIFY(ext_equal, FALSE, "H5Sextent_equal");
ext_equal = H5Sextent_equal(d3_space2, d2_space3);
VERIFY(ext_equal, FALSE, "H5Sextent_equal");
ext_equal = H5Sextent_equal(d3_space2, d2_space4);
VERIFY(ext_equal, FALSE, "H5Sextent_equal");
ext_equal = H5Sextent_equal(d3_space2, d3_space1);
VERIFY(ext_equal, FALSE, "H5Sextent_equal");
ext_equal = H5Sextent_equal(d3_space2, d3_space2);
VERIFY(ext_equal, TRUE, "H5Sextent_equal");
ext_equal = H5Sextent_equal(d3_space2, d3_space3);
VERIFY(ext_equal, FALSE, "H5Sextent_equal");
ext_equal = H5Sextent_equal(d3_space2, d3_space4);
VERIFY(ext_equal, FALSE, "H5Sextent_equal");
/* Compare small 2-D dataspace w/fixed max. dims against all others, including itself */
ext_equal = H5Sextent_equal(d3_space3, null_space);
VERIFY(ext_equal, FALSE, "H5Sextent_equal");
ext_equal = H5Sextent_equal(d3_space3, scalar_space);
VERIFY(ext_equal, FALSE, "H5Sextent_equal");
ext_equal = H5Sextent_equal(d3_space3, d1_space1);
VERIFY(ext_equal, FALSE, "H5Sextent_equal");
ext_equal = H5Sextent_equal(d3_space3, d1_space2);
VERIFY(ext_equal, FALSE, "H5Sextent_equal");
ext_equal = H5Sextent_equal(d3_space3, d1_space3);
VERIFY(ext_equal, FALSE, "H5Sextent_equal");
ext_equal = H5Sextent_equal(d3_space3, d1_space4);
VERIFY(ext_equal, FALSE, "H5Sextent_equal");
ext_equal = H5Sextent_equal(d3_space3, d2_space1);
VERIFY(ext_equal, FALSE, "H5Sextent_equal");
ext_equal = H5Sextent_equal(d3_space3, d2_space2);
VERIFY(ext_equal, FALSE, "H5Sextent_equal");
ext_equal = H5Sextent_equal(d3_space3, d2_space3);
VERIFY(ext_equal, FALSE, "H5Sextent_equal");
ext_equal = H5Sextent_equal(d3_space3, d2_space4);
VERIFY(ext_equal, FALSE, "H5Sextent_equal");
ext_equal = H5Sextent_equal(d3_space3, d3_space1);
VERIFY(ext_equal, FALSE, "H5Sextent_equal");
ext_equal = H5Sextent_equal(d3_space3, d3_space2);
VERIFY(ext_equal, FALSE, "H5Sextent_equal");
ext_equal = H5Sextent_equal(d3_space3, d3_space3);
VERIFY(ext_equal, TRUE, "H5Sextent_equal");
ext_equal = H5Sextent_equal(d3_space3, d3_space4);
VERIFY(ext_equal, FALSE, "H5Sextent_equal");
/* Compare small 2-D dataspace w/unlimited max. dims against all others, including itself */
ext_equal = H5Sextent_equal(d3_space4, null_space);
VERIFY(ext_equal, FALSE, "H5Sextent_equal");
ext_equal = H5Sextent_equal(d3_space4, scalar_space);
VERIFY(ext_equal, FALSE, "H5Sextent_equal");
ext_equal = H5Sextent_equal(d3_space4, d1_space1);
VERIFY(ext_equal, FALSE, "H5Sextent_equal");
ext_equal = H5Sextent_equal(d3_space4, d1_space2);
VERIFY(ext_equal, FALSE, "H5Sextent_equal");
ext_equal = H5Sextent_equal(d3_space4, d1_space3);
VERIFY(ext_equal, FALSE, "H5Sextent_equal");
ext_equal = H5Sextent_equal(d3_space4, d1_space4);
VERIFY(ext_equal, FALSE, "H5Sextent_equal");
ext_equal = H5Sextent_equal(d3_space4, d2_space1);
VERIFY(ext_equal, FALSE, "H5Sextent_equal");
ext_equal = H5Sextent_equal(d3_space4, d2_space2);
VERIFY(ext_equal, FALSE, "H5Sextent_equal");
ext_equal = H5Sextent_equal(d3_space4, d2_space3);
VERIFY(ext_equal, FALSE, "H5Sextent_equal");
ext_equal = H5Sextent_equal(d3_space4, d2_space4);
VERIFY(ext_equal, FALSE, "H5Sextent_equal");
ext_equal = H5Sextent_equal(d3_space4, d3_space1);
VERIFY(ext_equal, FALSE, "H5Sextent_equal");
ext_equal = H5Sextent_equal(d3_space4, d3_space2);
VERIFY(ext_equal, FALSE, "H5Sextent_equal");
ext_equal = H5Sextent_equal(d3_space4, d3_space3);
VERIFY(ext_equal, FALSE, "H5Sextent_equal");
ext_equal = H5Sextent_equal(d3_space4, d3_space4);
VERIFY(ext_equal, TRUE, "H5Sextent_equal");
/* Close dataspaces */
ret = H5Sclose(null_space);
CHECK(ret, FAIL, "H5Sclose");
ret = H5Sclose(scalar_space);
CHECK(ret, FAIL, "H5Sclose");
ret = H5Sclose(d1_space1);
CHECK(ret, FAIL, "H5Sclose");
ret = H5Sclose(d1_space2);
CHECK(ret, FAIL, "H5Sclose");
ret = H5Sclose(d1_space3);
CHECK(ret, FAIL, "H5Sclose");
ret = H5Sclose(d1_space4);
CHECK(ret, FAIL, "H5Sclose");
ret = H5Sclose(d2_space1);
CHECK(ret, FAIL, "H5Sclose");
ret = H5Sclose(d2_space2);
CHECK(ret, FAIL, "H5Sclose");
ret = H5Sclose(d2_space3);
CHECK(ret, FAIL, "H5Sclose");
ret = H5Sclose(d2_space4);
CHECK(ret, FAIL, "H5Sclose");
ret = H5Sclose(d3_space1);
CHECK(ret, FAIL, "H5Sclose");
ret = H5Sclose(d3_space2);
CHECK(ret, FAIL, "H5Sclose");
ret = H5Sclose(d3_space3);
CHECK(ret, FAIL, "H5Sclose");
ret = H5Sclose(d3_space4);
CHECK(ret, FAIL, "H5Sclose");
} /* test_h5s_extent_equal() */
/****************************************************************
**
** test_h5s_extent_copy(): Exercise extent copy code
**
****************************************************************/
static void
test_h5s_extent_copy(void)
{
hid_t spaces[14] = {-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}; /* Array of all dataspaces */
hid_t tmp_space = -1;
hsize_t d1_dims1[1] = {10}, /* 1-D dimensions */
d1_dims2[1] = {20}, d1_dims3[1] = {H5S_UNLIMITED};
hsize_t d2_dims1[2] = {10, 10}, /* 2-D dimensions */
d2_dims2[2] = {20, 20}, d2_dims3[2] = {H5S_UNLIMITED, H5S_UNLIMITED};
hsize_t d3_dims1[3] = {10, 10, 10}, /* 3-D dimensions */
d3_dims2[3] = {20, 20, 20}, d3_dims3[3] = {H5S_UNLIMITED, H5S_UNLIMITED, H5S_UNLIMITED};
hsize_t npoints[14]; /* Expected number of points in selection for each element in spaces */
hssize_t npoints_ret; /* Number of points returned by H5Sget_select_npoints() */
htri_t ext_equal; /* Whether two dataspace extents are equal */
const unsigned num_spaces = sizeof(spaces) / sizeof(spaces[0]);
unsigned i, j;
herr_t ret; /* Generic error return */
/* Create dataspaces */
spaces[0] = H5Screate(H5S_NULL);
CHECK(spaces[0], FAIL, "H5Screate");
npoints[0] = (hsize_t)0;
spaces[1] = H5Screate(H5S_SCALAR);
CHECK(spaces[1], FAIL, "H5Screate");
npoints[1] = (hsize_t)1;
spaces[2] = H5Screate_simple(1, d1_dims1, NULL);
CHECK(spaces[2], FAIL, "H5Screate");
npoints[2] = d1_dims1[0];
spaces[3] = H5Screate_simple(1, d1_dims2, NULL);
CHECK(spaces[3], FAIL, "H5Screate");
npoints[3] = d1_dims2[0];
spaces[4] = H5Screate_simple(1, d1_dims1, d1_dims2);
CHECK(spaces[4], FAIL, "H5Screate");
npoints[4] = d1_dims1[0];
spaces[5] = H5Screate_simple(1, d1_dims1, d1_dims3);
CHECK(spaces[5], FAIL, "H5Screate");
npoints[5] = d1_dims1[0];
spaces[6] = H5Screate_simple(2, d2_dims1, NULL);
CHECK(spaces[6], FAIL, "H5Screate");
npoints[6] = d2_dims1[0] * d2_dims1[1];
spaces[7] = H5Screate_simple(2, d2_dims2, NULL);
CHECK(spaces[7], FAIL, "H5Screate");
npoints[7] = d2_dims2[0] * d2_dims2[1];
spaces[8] = H5Screate_simple(2, d2_dims1, d2_dims2);
CHECK(spaces[8], FAIL, "H5Screate");
npoints[8] = d2_dims1[0] * d2_dims1[1];
spaces[9] = H5Screate_simple(2, d2_dims1, d2_dims3);
CHECK(spaces[9], FAIL, "H5Screate");
npoints[9] = d2_dims1[0] * d2_dims1[1];
spaces[10] = H5Screate_simple(3, d3_dims1, NULL);
CHECK(spaces[10], FAIL, "H5Screate");
npoints[10] = d3_dims1[0] * d3_dims1[1] * d3_dims1[2];
spaces[11] = H5Screate_simple(3, d3_dims2, NULL);
CHECK(spaces[11], FAIL, "H5Screate");
npoints[11] = d3_dims2[0] * d3_dims2[1] * d3_dims2[2];
spaces[12] = H5Screate_simple(3, d3_dims1, d3_dims2);
CHECK(spaces[12], FAIL, "H5Screate");
npoints[12] = d3_dims1[0] * d3_dims1[1] * d3_dims1[2];
spaces[13] = H5Screate_simple(3, d3_dims1, d3_dims3);
CHECK(spaces[13], FAIL, "H5Screate");
npoints[13] = d3_dims1[0] * d3_dims1[1] * d3_dims1[2];
tmp_space = H5Screate(H5S_NULL);
CHECK(tmp_space, FAIL, "H5Screate");
/* Copy between all dataspace combinations. Note there are a few
* duplicates. */
for (i = 0; i < num_spaces; i++)
for (j = i; j < num_spaces; j++) {
/* Copy from i to j, unless the inner loop just restarted, in which
* case i and j are the same, so the second call to H5Sextent_copy()
* will test copying from i/j to i/j */
ret = H5Sextent_copy(tmp_space, spaces[j]);
CHECK(ret, FAIL, "H5Sextent_copy");
/* Verify that the extents are equal */
ext_equal = H5Sextent_equal(tmp_space, spaces[j]);
VERIFY(ext_equal, TRUE, "H5Sextent_equal");
/* Verify that the correct number of elements is selected */
npoints_ret = H5Sget_select_npoints(tmp_space);
VERIFY((hsize_t)npoints_ret, npoints[j], "H5Sget_select_npoints");
/* Copy from j to i */
ret = H5Sextent_copy(tmp_space, spaces[i]);
CHECK(ret, FAIL, "H5Sextent_copy");
/* Verify that the extents are equal */
ext_equal = H5Sextent_equal(tmp_space, spaces[i]);
VERIFY(ext_equal, TRUE, "H5Sextent_equal");
/* Verify that the correct number of elements is selected */
npoints_ret = H5Sget_select_npoints(tmp_space);
VERIFY((hsize_t)npoints_ret, npoints[i], "H5Sget_select_npoints");
} /* end for */
/* Close dataspaces */
for (i = 0; i < num_spaces; i++) {
ret = H5Sclose(spaces[i]);
CHECK(ret, FAIL, "H5Sclose");
spaces[i] = -1;
} /* end for */
ret = H5Sclose(tmp_space);
CHECK(ret, FAIL, "H5Sclose");
} /* test_h5s_extent_copy() */
/****************************************************************
**
** test_h5s_bug1(): Test Creating dataspace with H5Screate then
* setting extent with H5Sextent_copy.
**
****************************************************************/
static void
test_h5s_bug1(void)
{
hid_t space1; /* Dataspace to copy extent to */
hid_t space2; /* Scalar dataspace */
hsize_t dims[2] = {10, 10}; /* Dimensions */
hsize_t start[2] = {0, 0}; /* Hyperslab start */
htri_t select_valid; /* Whether the dataspace selection is valid */
herr_t ret; /* Generic error return */
/* Create dataspaces */
space1 = H5Screate(H5S_SIMPLE);
CHECK(space1, FAIL, "H5Screate");
space2 = H5Screate_simple(2, dims, NULL);
CHECK(space2, FAIL, "H5Screate");
/* Copy extent to space1 */
ret = H5Sextent_copy(space1, space2);
CHECK(ret, FAIL, "H5Sextent_copy");
/* Select hyperslab in space1 containing entire extent */
ret = H5Sselect_hyperslab(space1, H5S_SELECT_SET, start, NULL, dims, NULL);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
/* Check that space1's selection is valid */
select_valid = H5Sselect_valid(space1);
CHECK(select_valid, FAIL, "H5Sselect_valid");
VERIFY(select_valid, TRUE, "H5Sselect_valid result");
/* Close dataspaces */
ret = H5Sclose(space1);
CHECK(ret, FAIL, "H5Sclose");
ret = H5Sclose(space2);
CHECK(ret, FAIL, "H5Sclose");
} /* test_h5s_bug1() */
/****************************************************************
**
** test_h5s_bug2(): Test combining hyperslabs in a way that used
** to trip up H5S__hyper_update_diminfo()
**
****************************************************************/
static void
test_h5s_bug2(void)
{
hid_t space; /* Dataspace to copy extent to */
hsize_t dims[2] = {1, 5}; /* Dimensions */
hsize_t start[2] = {0, 0}; /* Hyperslab start */
hsize_t count[2] = {1, 1}; /* Hyperslab start */
htri_t select_valid; /* Whether the dataspace selection is valid */
hssize_t elements_selected; /* Number of elements selected */
herr_t ret; /* Generic error return */
/* Create dataspace */
space = H5Screate_simple(2, dims, NULL);
CHECK(space, FAIL, "H5Screate");
/* Select hyperslab in space containing first element */
ret = H5Sselect_hyperslab(space, H5S_SELECT_SET, start, NULL, count, NULL);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
/* Add hyperslab in space containing last element */
start[1] = 4;
ret = H5Sselect_hyperslab(space, H5S_SELECT_OR, start, NULL, count, NULL);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
/* Add hyperslab in space containing the first 3 elements */
start[1] = 0;
count[1] = 3;
ret = H5Sselect_hyperslab(space, H5S_SELECT_OR, start, NULL, count, NULL);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
/* Check that space's selection is valid */
select_valid = H5Sselect_valid(space);
CHECK(select_valid, FAIL, "H5Sselect_valid");
VERIFY(select_valid, TRUE, "H5Sselect_valid result");
/* Check that 4 elements are selected */
elements_selected = H5Sget_select_npoints(space);
CHECK(elements_selected, FAIL, "H5Sselect_valid");
VERIFY(elements_selected, 4, "H5Sselect_valid result");
/* Close dataspaces */
ret = H5Sclose(space);
CHECK(ret, FAIL, "H5Sclose");
} /* test_h5s_bug2() */
/*-------------------------------------------------------------------------
* Function: test_versionbounds
*
* Purpose: Tests version bounds with dataspace.
*
* Description:
* This function creates a file with lower bounds then later
* reopens it with higher bounds to show that the dataspace
* version is upgraded appropriately.
*
* Return: Success: 0
* Failure: number of errors
*
*-------------------------------------------------------------------------
*/
#define VERBFNAME "tverbounds_dspace.h5"
#define BASIC_DSET "Basic Dataset"
#define LATEST_DSET "Latest Dataset"
static void
test_versionbounds(void)
{
hid_t file = -1; /* File ID */
hid_t space = -1; /* Dataspace ID */
hid_t dset = -1; /* Dataset ID */
hid_t fapl = -1; /* File access property list ID */
hid_t dset_space = -1; /* Retrieved dataset's dataspace ID */
hsize_t dim[1]; /* Dataset dimensions */
H5F_libver_t low, high; /* File format bounds */
H5S_t *spacep = NULL; /* Pointer to internal dataspace */
herr_t ret = 0; /* Generic return value */
/* Output message about test being performed */
MESSAGE(5, ("Testing Version Bounds\n"));
/* Create a file access property list */
fapl = H5Pcreate(H5P_FILE_ACCESS);
CHECK(fapl, FAIL, "H5Pcreate");
/* Create dataspace */
dim[0] = 10;
space = H5Screate_simple(1, dim, NULL);
CHECK(space, FAIL, "H5Screate");
/* Its version should be H5O_SDSPACE_VERSION_1 */
spacep = (H5S_t *)H5I_object(space);
CHECK_PTR(spacep, "H5I_object");
VERIFY(spacep->extent.version, H5O_SDSPACE_VERSION_1, "basic dataspace version bound");
/* Set high bound to V18 */
low = H5F_LIBVER_EARLIEST;
high = H5F_LIBVER_V18;
ret = H5Pset_libver_bounds(fapl, low, high);
CHECK(ret, FAIL, "H5Pset_libver_bounds");
/* Create the file */
file = H5Fcreate(VERBFNAME, H5F_ACC_TRUNC, H5P_DEFAULT, fapl);
CHECK(file, FAIL, "H5Fcreate");
/* Create a basic dataset */
dset = H5Dcreate2(file, BASIC_DSET, H5T_NATIVE_INT, space, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT);
if (dset > 0) /* dataset created successfully */
{
/* Get the internal dataspace pointer */
dset_space = H5Dget_space(dset);
CHECK(dset_space, FAIL, "H5Dget_space");
spacep = (H5S_t *)H5I_object(dset_space);
CHECK_PTR(spacep, "H5I_object");
/* Dataspace version should remain as H5O_SDSPACE_VERSION_1 */
VERIFY(spacep->extent.version, H5O_SDSPACE_VERSION_1, "basic dataspace version bound");
/* Close dataspace */
ret = H5Sclose(dset_space);
CHECK(ret, FAIL, "H5Sclose");
}
/* Close basic dataset and the file */
ret = H5Dclose(dset);
CHECK(ret, FAIL, "H5Dclose");
ret = H5Fclose(file);
CHECK(ret, FAIL, "H5Fclose");
/* Set low and high bounds to latest to trigger the increment of the
dataspace version */
low = H5F_LIBVER_LATEST;
high = H5F_LIBVER_LATEST;
ret = H5Pset_libver_bounds(fapl, low, high);
CHECK(ret, FAIL, "H5Pset_libver_bounds");
/* Reopen the file with new version bounds, LATEST/LATEST */
file = H5Fopen(VERBFNAME, H5F_ACC_RDWR, fapl);
/* Create another dataset using the same dspace as the previous dataset */
dset = H5Dcreate2(file, LATEST_DSET, H5T_NATIVE_INT, space, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT);
CHECK(dset, FAIL, "H5Dcreate2");
/* Dataset created successfully. Verify that dataspace version has been
upgraded per the low bound */
/* Get the internal dataspace pointer */
dset_space = H5Dget_space(dset);
CHECK(dset_space, FAIL, "H5Dget_space");
spacep = (H5S_t *)H5I_object(dset_space);
CHECK_PTR(spacep, "H5I_object");
/* Verify the dataspace version */
VERIFY(spacep->extent.version, H5O_sdspace_ver_bounds[low], "upgraded dataspace version");
/* Close everything */
ret = H5Sclose(dset_space);
CHECK(ret, FAIL, "H5Sclose");
ret = H5Dclose(dset);
CHECK(ret, FAIL, "H5Dclose");
ret = H5Sclose(space);
CHECK(ret, FAIL, "H5Sclose");
ret = H5Pclose(fapl);
CHECK(ret, FAIL, "H5Pclose");
ret = H5Fclose(file);
CHECK(ret, FAIL, "H5Fclose");
} /* end test_versionbounds() */
/****************************************************************
**
** test_h5s(): Main H5S (dataspace) testing routine.
**
****************************************************************/
void
test_h5s(void)
{
H5F_libver_t low, high; /* Low and high bounds */
/* Output message about test being performed */
MESSAGE(5, ("Testing Dataspaces\n"));
test_h5s_basic(); /* Test basic H5S code */
test_h5s_null(); /* Test Null dataspace H5S code */
test_h5s_zero_dim(); /* Test dataspace with zero dimension size */
/* Loop through all the combinations of low/high version bounds */
for (low = H5F_LIBVER_EARLIEST; low < H5F_LIBVER_NBOUNDS; low++) {
for (high = H5F_LIBVER_EARLIEST; high < H5F_LIBVER_NBOUNDS; high++) {
/* Invalid combinations, just continue */
if (high == H5F_LIBVER_EARLIEST || high < low)
continue;
test_h5s_encode(low, high); /* Test encoding and decoding */
test_h5s_encode_regular_hyper(low, high); /* Test encoding regular hyperslabs */
test_h5s_encode_irregular_hyper(low, high); /* Test encoding irregular hyperslabs */
test_h5s_encode_points(low, high); /* Test encoding points */
} /* end high bound */
} /* end low bound */
test_h5s_encode_length(); /* Test version 2 hyperslab encoding length is correct */
#ifndef H5_NO_DEPRECATED_SYMBOLS
test_h5s_encode1(); /* Test operations with old API routine (H5Sencode1) */
#endif /* H5_NO_DEPRECATED_SYMBOLS */
test_h5s_scalar_write(); /* Test scalar H5S writing code */
test_h5s_scalar_read(); /* Test scalar H5S reading code */
test_h5s_compound_scalar_write(); /* Test compound datatype scalar H5S writing code */
test_h5s_compound_scalar_read(); /* Test compound datatype scalar H5S reading code */
/* This test was added later to exercise a bug in chunked I/O */
test_h5s_chunk(); /* Exercise bug fix for chunked I/O */
test_h5s_extent_equal(); /* Test extent comparison code */
test_h5s_extent_copy(); /* Test extent copy code */
test_h5s_bug1(); /* Test bug in offset initialization */
test_h5s_bug2(); /* Test bug found in H5S__hyper_update_diminfo() */
test_versionbounds(); /* Test version bounds with dataspace */
} /* test_h5s() */
/*-------------------------------------------------------------------------
* Function: cleanup_h5s
*
* Purpose: Cleanup temporary test files
*
* Return: none
*
* Programmer: Albert Cheng
* July 2, 1998
*
*-------------------------------------------------------------------------
*/
void
cleanup_h5s(void)
{
H5E_BEGIN_TRY
{
H5Fdelete(DATAFILE, H5P_DEFAULT);
H5Fdelete(NULLFILE, H5P_DEFAULT);
H5Fdelete(BASICFILE, H5P_DEFAULT);
H5Fdelete(ZEROFILE, H5P_DEFAULT);
H5Fdelete(VERBFNAME, H5P_DEFAULT);
}
H5E_END_TRY;
}