You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
529 lines
16 KiB
529 lines
16 KiB
2 years ago
|
*> \brief <b> CGEGS computes the eigenvalues, Schur form, and, optionally, the left and or/right Schur vectors of a complex matrix pair (A,B)</b>
|
||
|
*
|
||
|
* =========== DOCUMENTATION ===========
|
||
|
*
|
||
|
* Online html documentation available at
|
||
|
* http://www.netlib.org/lapack/explore-html/
|
||
|
*
|
||
|
*> \htmlonly
|
||
|
*> Download CGEGS + dependencies
|
||
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cgegs.f">
|
||
|
*> [TGZ]</a>
|
||
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cgegs.f">
|
||
|
*> [ZIP]</a>
|
||
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cgegs.f">
|
||
|
*> [TXT]</a>
|
||
|
*> \endhtmlonly
|
||
|
*
|
||
|
* Definition:
|
||
|
* ===========
|
||
|
*
|
||
|
* SUBROUTINE CGEGS( JOBVSL, JOBVSR, N, A, LDA, B, LDB, ALPHA, BETA,
|
||
|
* VSL, LDVSL, VSR, LDVSR, WORK, LWORK, RWORK,
|
||
|
* INFO )
|
||
|
*
|
||
|
* .. Scalar Arguments ..
|
||
|
* CHARACTER JOBVSL, JOBVSR
|
||
|
* INTEGER INFO, LDA, LDB, LDVSL, LDVSR, LWORK, N
|
||
|
* ..
|
||
|
* .. Array Arguments ..
|
||
|
* REAL RWORK( * )
|
||
|
* COMPLEX A( LDA, * ), ALPHA( * ), B( LDB, * ),
|
||
|
* $ BETA( * ), VSL( LDVSL, * ), VSR( LDVSR, * ),
|
||
|
* $ WORK( * )
|
||
|
* ..
|
||
|
*
|
||
|
*
|
||
|
*> \par Purpose:
|
||
|
* =============
|
||
|
*>
|
||
|
*> \verbatim
|
||
|
*>
|
||
|
*> This routine is deprecated and has been replaced by routine CGGES.
|
||
|
*>
|
||
|
*> CGEGS computes the eigenvalues, Schur form, and, optionally, the
|
||
|
*> left and or/right Schur vectors of a complex matrix pair (A,B).
|
||
|
*> Given two square matrices A and B, the generalized Schur
|
||
|
*> factorization has the form
|
||
|
*>
|
||
|
*> A = Q*S*Z**H, B = Q*T*Z**H
|
||
|
*>
|
||
|
*> where Q and Z are unitary matrices and S and T are upper triangular.
|
||
|
*> The columns of Q are the left Schur vectors
|
||
|
*> and the columns of Z are the right Schur vectors.
|
||
|
*>
|
||
|
*> If only the eigenvalues of (A,B) are needed, the driver routine
|
||
|
*> CGEGV should be used instead. See CGEGV for a description of the
|
||
|
*> eigenvalues of the generalized nonsymmetric eigenvalue problem
|
||
|
*> (GNEP).
|
||
|
*> \endverbatim
|
||
|
*
|
||
|
* Arguments:
|
||
|
* ==========
|
||
|
*
|
||
|
*> \param[in] JOBVSL
|
||
|
*> \verbatim
|
||
|
*> JOBVSL is CHARACTER*1
|
||
|
*> = 'N': do not compute the left Schur vectors;
|
||
|
*> = 'V': compute the left Schur vectors (returned in VSL).
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] JOBVSR
|
||
|
*> \verbatim
|
||
|
*> JOBVSR is CHARACTER*1
|
||
|
*> = 'N': do not compute the right Schur vectors;
|
||
|
*> = 'V': compute the right Schur vectors (returned in VSR).
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] N
|
||
|
*> \verbatim
|
||
|
*> N is INTEGER
|
||
|
*> The order of the matrices A, B, VSL, and VSR. N >= 0.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in,out] A
|
||
|
*> \verbatim
|
||
|
*> A is COMPLEX array, dimension (LDA, N)
|
||
|
*> On entry, the matrix A.
|
||
|
*> On exit, the upper triangular matrix S from the generalized
|
||
|
*> Schur factorization.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] LDA
|
||
|
*> \verbatim
|
||
|
*> LDA is INTEGER
|
||
|
*> The leading dimension of A. LDA >= max(1,N).
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in,out] B
|
||
|
*> \verbatim
|
||
|
*> B is COMPLEX array, dimension (LDB, N)
|
||
|
*> On entry, the matrix B.
|
||
|
*> On exit, the upper triangular matrix T from the generalized
|
||
|
*> Schur factorization.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] LDB
|
||
|
*> \verbatim
|
||
|
*> LDB is INTEGER
|
||
|
*> The leading dimension of B. LDB >= max(1,N).
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] ALPHA
|
||
|
*> \verbatim
|
||
|
*> ALPHA is COMPLEX array, dimension (N)
|
||
|
*> The complex scalars alpha that define the eigenvalues of
|
||
|
*> GNEP. ALPHA(j) = S(j,j), the diagonal element of the Schur
|
||
|
*> form of A.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] BETA
|
||
|
*> \verbatim
|
||
|
*> BETA is COMPLEX array, dimension (N)
|
||
|
*> The non-negative real scalars beta that define the
|
||
|
*> eigenvalues of GNEP. BETA(j) = T(j,j), the diagonal element
|
||
|
*> of the triangular factor T.
|
||
|
*>
|
||
|
*> Together, the quantities alpha = ALPHA(j) and beta = BETA(j)
|
||
|
*> represent the j-th eigenvalue of the matrix pair (A,B), in
|
||
|
*> one of the forms lambda = alpha/beta or mu = beta/alpha.
|
||
|
*> Since either lambda or mu may overflow, they should not,
|
||
|
*> in general, be computed.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] VSL
|
||
|
*> \verbatim
|
||
|
*> VSL is COMPLEX array, dimension (LDVSL,N)
|
||
|
*> If JOBVSL = 'V', the matrix of left Schur vectors Q.
|
||
|
*> Not referenced if JOBVSL = 'N'.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] LDVSL
|
||
|
*> \verbatim
|
||
|
*> LDVSL is INTEGER
|
||
|
*> The leading dimension of the matrix VSL. LDVSL >= 1, and
|
||
|
*> if JOBVSL = 'V', LDVSL >= N.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] VSR
|
||
|
*> \verbatim
|
||
|
*> VSR is COMPLEX array, dimension (LDVSR,N)
|
||
|
*> If JOBVSR = 'V', the matrix of right Schur vectors Z.
|
||
|
*> Not referenced if JOBVSR = 'N'.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] LDVSR
|
||
|
*> \verbatim
|
||
|
*> LDVSR is INTEGER
|
||
|
*> The leading dimension of the matrix VSR. LDVSR >= 1, and
|
||
|
*> if JOBVSR = 'V', LDVSR >= N.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] WORK
|
||
|
*> \verbatim
|
||
|
*> WORK is COMPLEX array, dimension (MAX(1,LWORK))
|
||
|
*> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] LWORK
|
||
|
*> \verbatim
|
||
|
*> LWORK is INTEGER
|
||
|
*> The dimension of the array WORK. LWORK >= max(1,2*N).
|
||
|
*> For good performance, LWORK must generally be larger.
|
||
|
*> To compute the optimal value of LWORK, call ILAENV to get
|
||
|
*> blocksizes (for CGEQRF, CUNMQR, and CUNGQR.) Then compute:
|
||
|
*> NB -- MAX of the blocksizes for CGEQRF, CUNMQR, and CUNGQR;
|
||
|
*> the optimal LWORK is N*(NB+1).
|
||
|
*>
|
||
|
*> If LWORK = -1, then a workspace query is assumed; the routine
|
||
|
*> only calculates the optimal size of the WORK array, returns
|
||
|
*> this value as the first entry of the WORK array, and no error
|
||
|
*> message related to LWORK is issued by XERBLA.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] RWORK
|
||
|
*> \verbatim
|
||
|
*> RWORK is REAL array, dimension (3*N)
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] INFO
|
||
|
*> \verbatim
|
||
|
*> INFO is INTEGER
|
||
|
*> = 0: successful exit
|
||
|
*> < 0: if INFO = -i, the i-th argument had an illegal value.
|
||
|
*> =1,...,N:
|
||
|
*> The QZ iteration failed. (A,B) are not in Schur
|
||
|
*> form, but ALPHA(j) and BETA(j) should be correct for
|
||
|
*> j=INFO+1,...,N.
|
||
|
*> > N: errors that usually indicate LAPACK problems:
|
||
|
*> =N+1: error return from CGGBAL
|
||
|
*> =N+2: error return from CGEQRF
|
||
|
*> =N+3: error return from CUNMQR
|
||
|
*> =N+4: error return from CUNGQR
|
||
|
*> =N+5: error return from CGGHRD
|
||
|
*> =N+6: error return from CHGEQZ (other than failed
|
||
|
*> iteration)
|
||
|
*> =N+7: error return from CGGBAK (computing VSL)
|
||
|
*> =N+8: error return from CGGBAK (computing VSR)
|
||
|
*> =N+9: error return from CLASCL (various places)
|
||
|
*> \endverbatim
|
||
|
*
|
||
|
* Authors:
|
||
|
* ========
|
||
|
*
|
||
|
*> \author Univ. of Tennessee
|
||
|
*> \author Univ. of California Berkeley
|
||
|
*> \author Univ. of Colorado Denver
|
||
|
*> \author NAG Ltd.
|
||
|
*
|
||
|
*> \ingroup complexGEeigen
|
||
|
*
|
||
|
* =====================================================================
|
||
|
SUBROUTINE CGEGS( JOBVSL, JOBVSR, N, A, LDA, B, LDB, ALPHA, BETA,
|
||
|
$ VSL, LDVSL, VSR, LDVSR, WORK, LWORK, RWORK,
|
||
|
$ INFO )
|
||
|
*
|
||
|
* -- LAPACK driver routine --
|
||
|
* -- LAPACK is a software package provided by Univ. of Tennessee, --
|
||
|
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
||
|
*
|
||
|
* .. Scalar Arguments ..
|
||
|
CHARACTER JOBVSL, JOBVSR
|
||
|
INTEGER INFO, LDA, LDB, LDVSL, LDVSR, LWORK, N
|
||
|
* ..
|
||
|
* .. Array Arguments ..
|
||
|
REAL RWORK( * )
|
||
|
COMPLEX A( LDA, * ), ALPHA( * ), B( LDB, * ),
|
||
|
$ BETA( * ), VSL( LDVSL, * ), VSR( LDVSR, * ),
|
||
|
$ WORK( * )
|
||
|
* ..
|
||
|
*
|
||
|
* =====================================================================
|
||
|
*
|
||
|
* .. Parameters ..
|
||
|
REAL ZERO, ONE
|
||
|
PARAMETER ( ZERO = 0.0E0, ONE = 1.0E0 )
|
||
|
COMPLEX CZERO, CONE
|
||
|
PARAMETER ( CZERO = ( 0.0E0, 0.0E0 ),
|
||
|
$ CONE = ( 1.0E0, 0.0E0 ) )
|
||
|
* ..
|
||
|
* .. Local Scalars ..
|
||
|
LOGICAL ILASCL, ILBSCL, ILVSL, ILVSR, LQUERY
|
||
|
INTEGER ICOLS, IHI, IINFO, IJOBVL, IJOBVR, ILEFT,
|
||
|
$ ILO, IRIGHT, IROWS, IRWORK, ITAU, IWORK,
|
||
|
$ LOPT, LWKMIN, LWKOPT, NB, NB1, NB2, NB3
|
||
|
REAL ANRM, ANRMTO, BIGNUM, BNRM, BNRMTO, EPS,
|
||
|
$ SAFMIN, SMLNUM
|
||
|
* ..
|
||
|
* .. External Subroutines ..
|
||
|
EXTERNAL CGEQRF, CGGBAK, CGGBAL, CGGHRD, CHGEQZ, CLACPY,
|
||
|
$ CLASCL, CLASET, CUNGQR, CUNMQR, XERBLA
|
||
|
* ..
|
||
|
* .. External Functions ..
|
||
|
LOGICAL LSAME
|
||
|
INTEGER ILAENV
|
||
|
REAL CLANGE, SLAMCH
|
||
|
EXTERNAL ILAENV, LSAME, CLANGE, SLAMCH
|
||
|
* ..
|
||
|
* .. Intrinsic Functions ..
|
||
|
INTRINSIC INT, MAX
|
||
|
* ..
|
||
|
* .. Executable Statements ..
|
||
|
*
|
||
|
* Decode the input arguments
|
||
|
*
|
||
|
IF( LSAME( JOBVSL, 'N' ) ) THEN
|
||
|
IJOBVL = 1
|
||
|
ILVSL = .FALSE.
|
||
|
ELSE IF( LSAME( JOBVSL, 'V' ) ) THEN
|
||
|
IJOBVL = 2
|
||
|
ILVSL = .TRUE.
|
||
|
ELSE
|
||
|
IJOBVL = -1
|
||
|
ILVSL = .FALSE.
|
||
|
END IF
|
||
|
*
|
||
|
IF( LSAME( JOBVSR, 'N' ) ) THEN
|
||
|
IJOBVR = 1
|
||
|
ILVSR = .FALSE.
|
||
|
ELSE IF( LSAME( JOBVSR, 'V' ) ) THEN
|
||
|
IJOBVR = 2
|
||
|
ILVSR = .TRUE.
|
||
|
ELSE
|
||
|
IJOBVR = -1
|
||
|
ILVSR = .FALSE.
|
||
|
END IF
|
||
|
*
|
||
|
* Test the input arguments
|
||
|
*
|
||
|
LWKMIN = MAX( 2*N, 1 )
|
||
|
LWKOPT = LWKMIN
|
||
|
WORK( 1 ) = LWKOPT
|
||
|
LQUERY = ( LWORK.EQ.-1 )
|
||
|
INFO = 0
|
||
|
IF( IJOBVL.LE.0 ) THEN
|
||
|
INFO = -1
|
||
|
ELSE IF( IJOBVR.LE.0 ) THEN
|
||
|
INFO = -2
|
||
|
ELSE IF( N.LT.0 ) THEN
|
||
|
INFO = -3
|
||
|
ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
|
||
|
INFO = -5
|
||
|
ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
|
||
|
INFO = -7
|
||
|
ELSE IF( LDVSL.LT.1 .OR. ( ILVSL .AND. LDVSL.LT.N ) ) THEN
|
||
|
INFO = -11
|
||
|
ELSE IF( LDVSR.LT.1 .OR. ( ILVSR .AND. LDVSR.LT.N ) ) THEN
|
||
|
INFO = -13
|
||
|
ELSE IF( LWORK.LT.LWKMIN .AND. .NOT.LQUERY ) THEN
|
||
|
INFO = -15
|
||
|
END IF
|
||
|
*
|
||
|
IF( INFO.EQ.0 ) THEN
|
||
|
NB1 = ILAENV( 1, 'CGEQRF', ' ', N, N, -1, -1 )
|
||
|
NB2 = ILAENV( 1, 'CUNMQR', ' ', N, N, N, -1 )
|
||
|
NB3 = ILAENV( 1, 'CUNGQR', ' ', N, N, N, -1 )
|
||
|
NB = MAX( NB1, NB2, NB3 )
|
||
|
LOPT = N*(NB+1)
|
||
|
WORK( 1 ) = LOPT
|
||
|
END IF
|
||
|
*
|
||
|
IF( INFO.NE.0 ) THEN
|
||
|
CALL XERBLA( 'CGEGS ', -INFO )
|
||
|
RETURN
|
||
|
ELSE IF( LQUERY ) THEN
|
||
|
RETURN
|
||
|
END IF
|
||
|
*
|
||
|
* Quick return if possible
|
||
|
*
|
||
|
IF( N.EQ.0 )
|
||
|
$ RETURN
|
||
|
*
|
||
|
* Get machine constants
|
||
|
*
|
||
|
EPS = SLAMCH( 'E' )*SLAMCH( 'B' )
|
||
|
SAFMIN = SLAMCH( 'S' )
|
||
|
SMLNUM = N*SAFMIN / EPS
|
||
|
BIGNUM = ONE / SMLNUM
|
||
|
*
|
||
|
* Scale A if max element outside range [SMLNUM,BIGNUM]
|
||
|
*
|
||
|
ANRM = CLANGE( 'M', N, N, A, LDA, RWORK )
|
||
|
ILASCL = .FALSE.
|
||
|
IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN
|
||
|
ANRMTO = SMLNUM
|
||
|
ILASCL = .TRUE.
|
||
|
ELSE IF( ANRM.GT.BIGNUM ) THEN
|
||
|
ANRMTO = BIGNUM
|
||
|
ILASCL = .TRUE.
|
||
|
END IF
|
||
|
*
|
||
|
IF( ILASCL ) THEN
|
||
|
CALL CLASCL( 'G', -1, -1, ANRM, ANRMTO, N, N, A, LDA, IINFO )
|
||
|
IF( IINFO.NE.0 ) THEN
|
||
|
INFO = N + 9
|
||
|
RETURN
|
||
|
END IF
|
||
|
END IF
|
||
|
*
|
||
|
* Scale B if max element outside range [SMLNUM,BIGNUM]
|
||
|
*
|
||
|
BNRM = CLANGE( 'M', N, N, B, LDB, RWORK )
|
||
|
ILBSCL = .FALSE.
|
||
|
IF( BNRM.GT.ZERO .AND. BNRM.LT.SMLNUM ) THEN
|
||
|
BNRMTO = SMLNUM
|
||
|
ILBSCL = .TRUE.
|
||
|
ELSE IF( BNRM.GT.BIGNUM ) THEN
|
||
|
BNRMTO = BIGNUM
|
||
|
ILBSCL = .TRUE.
|
||
|
END IF
|
||
|
*
|
||
|
IF( ILBSCL ) THEN
|
||
|
CALL CLASCL( 'G', -1, -1, BNRM, BNRMTO, N, N, B, LDB, IINFO )
|
||
|
IF( IINFO.NE.0 ) THEN
|
||
|
INFO = N + 9
|
||
|
RETURN
|
||
|
END IF
|
||
|
END IF
|
||
|
*
|
||
|
* Permute the matrix to make it more nearly triangular
|
||
|
*
|
||
|
ILEFT = 1
|
||
|
IRIGHT = N + 1
|
||
|
IRWORK = IRIGHT + N
|
||
|
IWORK = 1
|
||
|
CALL CGGBAL( 'P', N, A, LDA, B, LDB, ILO, IHI, RWORK( ILEFT ),
|
||
|
$ RWORK( IRIGHT ), RWORK( IRWORK ), IINFO )
|
||
|
IF( IINFO.NE.0 ) THEN
|
||
|
INFO = N + 1
|
||
|
GO TO 10
|
||
|
END IF
|
||
|
*
|
||
|
* Reduce B to triangular form, and initialize VSL and/or VSR
|
||
|
*
|
||
|
IROWS = IHI + 1 - ILO
|
||
|
ICOLS = N + 1 - ILO
|
||
|
ITAU = IWORK
|
||
|
IWORK = ITAU + IROWS
|
||
|
CALL CGEQRF( IROWS, ICOLS, B( ILO, ILO ), LDB, WORK( ITAU ),
|
||
|
$ WORK( IWORK ), LWORK+1-IWORK, IINFO )
|
||
|
IF( IINFO.GE.0 )
|
||
|
$ LWKOPT = MAX( LWKOPT, INT( WORK( IWORK ) )+IWORK-1 )
|
||
|
IF( IINFO.NE.0 ) THEN
|
||
|
INFO = N + 2
|
||
|
GO TO 10
|
||
|
END IF
|
||
|
*
|
||
|
CALL CUNMQR( 'L', 'C', IROWS, ICOLS, IROWS, B( ILO, ILO ), LDB,
|
||
|
$ WORK( ITAU ), A( ILO, ILO ), LDA, WORK( IWORK ),
|
||
|
$ LWORK+1-IWORK, IINFO )
|
||
|
IF( IINFO.GE.0 )
|
||
|
$ LWKOPT = MAX( LWKOPT, INT( WORK( IWORK ) )+IWORK-1 )
|
||
|
IF( IINFO.NE.0 ) THEN
|
||
|
INFO = N + 3
|
||
|
GO TO 10
|
||
|
END IF
|
||
|
*
|
||
|
IF( ILVSL ) THEN
|
||
|
CALL CLASET( 'Full', N, N, CZERO, CONE, VSL, LDVSL )
|
||
|
CALL CLACPY( 'L', IROWS-1, IROWS-1, B( ILO+1, ILO ), LDB,
|
||
|
$ VSL( ILO+1, ILO ), LDVSL )
|
||
|
CALL CUNGQR( IROWS, IROWS, IROWS, VSL( ILO, ILO ), LDVSL,
|
||
|
$ WORK( ITAU ), WORK( IWORK ), LWORK+1-IWORK,
|
||
|
$ IINFO )
|
||
|
IF( IINFO.GE.0 )
|
||
|
$ LWKOPT = MAX( LWKOPT, INT( WORK( IWORK ) )+IWORK-1 )
|
||
|
IF( IINFO.NE.0 ) THEN
|
||
|
INFO = N + 4
|
||
|
GO TO 10
|
||
|
END IF
|
||
|
END IF
|
||
|
*
|
||
|
IF( ILVSR )
|
||
|
$ CALL CLASET( 'Full', N, N, CZERO, CONE, VSR, LDVSR )
|
||
|
*
|
||
|
* Reduce to generalized Hessenberg form
|
||
|
*
|
||
|
CALL CGGHRD( JOBVSL, JOBVSR, N, ILO, IHI, A, LDA, B, LDB, VSL,
|
||
|
$ LDVSL, VSR, LDVSR, IINFO )
|
||
|
IF( IINFO.NE.0 ) THEN
|
||
|
INFO = N + 5
|
||
|
GO TO 10
|
||
|
END IF
|
||
|
*
|
||
|
* Perform QZ algorithm, computing Schur vectors if desired
|
||
|
*
|
||
|
IWORK = ITAU
|
||
|
CALL CHGEQZ( 'S', JOBVSL, JOBVSR, N, ILO, IHI, A, LDA, B, LDB,
|
||
|
$ ALPHA, BETA, VSL, LDVSL, VSR, LDVSR, WORK( IWORK ),
|
||
|
$ LWORK+1-IWORK, RWORK( IRWORK ), IINFO )
|
||
|
IF( IINFO.GE.0 )
|
||
|
$ LWKOPT = MAX( LWKOPT, INT( WORK( IWORK ) )+IWORK-1 )
|
||
|
IF( IINFO.NE.0 ) THEN
|
||
|
IF( IINFO.GT.0 .AND. IINFO.LE.N ) THEN
|
||
|
INFO = IINFO
|
||
|
ELSE IF( IINFO.GT.N .AND. IINFO.LE.2*N ) THEN
|
||
|
INFO = IINFO - N
|
||
|
ELSE
|
||
|
INFO = N + 6
|
||
|
END IF
|
||
|
GO TO 10
|
||
|
END IF
|
||
|
*
|
||
|
* Apply permutation to VSL and VSR
|
||
|
*
|
||
|
IF( ILVSL ) THEN
|
||
|
CALL CGGBAK( 'P', 'L', N, ILO, IHI, RWORK( ILEFT ),
|
||
|
$ RWORK( IRIGHT ), N, VSL, LDVSL, IINFO )
|
||
|
IF( IINFO.NE.0 ) THEN
|
||
|
INFO = N + 7
|
||
|
GO TO 10
|
||
|
END IF
|
||
|
END IF
|
||
|
IF( ILVSR ) THEN
|
||
|
CALL CGGBAK( 'P', 'R', N, ILO, IHI, RWORK( ILEFT ),
|
||
|
$ RWORK( IRIGHT ), N, VSR, LDVSR, IINFO )
|
||
|
IF( IINFO.NE.0 ) THEN
|
||
|
INFO = N + 8
|
||
|
GO TO 10
|
||
|
END IF
|
||
|
END IF
|
||
|
*
|
||
|
* Undo scaling
|
||
|
*
|
||
|
IF( ILASCL ) THEN
|
||
|
CALL CLASCL( 'U', -1, -1, ANRMTO, ANRM, N, N, A, LDA, IINFO )
|
||
|
IF( IINFO.NE.0 ) THEN
|
||
|
INFO = N + 9
|
||
|
RETURN
|
||
|
END IF
|
||
|
CALL CLASCL( 'G', -1, -1, ANRMTO, ANRM, N, 1, ALPHA, N, IINFO )
|
||
|
IF( IINFO.NE.0 ) THEN
|
||
|
INFO = N + 9
|
||
|
RETURN
|
||
|
END IF
|
||
|
END IF
|
||
|
*
|
||
|
IF( ILBSCL ) THEN
|
||
|
CALL CLASCL( 'U', -1, -1, BNRMTO, BNRM, N, N, B, LDB, IINFO )
|
||
|
IF( IINFO.NE.0 ) THEN
|
||
|
INFO = N + 9
|
||
|
RETURN
|
||
|
END IF
|
||
|
CALL CLASCL( 'G', -1, -1, BNRMTO, BNRM, N, 1, BETA, N, IINFO )
|
||
|
IF( IINFO.NE.0 ) THEN
|
||
|
INFO = N + 9
|
||
|
RETURN
|
||
|
END IF
|
||
|
END IF
|
||
|
*
|
||
|
10 CONTINUE
|
||
|
WORK( 1 ) = LWKOPT
|
||
|
*
|
||
|
RETURN
|
||
|
*
|
||
|
* End of CGEGS
|
||
|
*
|
||
|
END
|