You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
432 lines
13 KiB
432 lines
13 KiB
2 years ago
|
*> \brief <b> SGELSX solves overdetermined or underdetermined systems for GE matrices</b>
|
||
|
*
|
||
|
* =========== DOCUMENTATION ===========
|
||
|
*
|
||
|
* Online html documentation available at
|
||
|
* http://www.netlib.org/lapack/explore-html/
|
||
|
*
|
||
|
*> \htmlonly
|
||
|
*> Download SGELSX + dependencies
|
||
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sgelsx.f">
|
||
|
*> [TGZ]</a>
|
||
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sgelsx.f">
|
||
|
*> [ZIP]</a>
|
||
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sgelsx.f">
|
||
|
*> [TXT]</a>
|
||
|
*> \endhtmlonly
|
||
|
*
|
||
|
* Definition:
|
||
|
* ===========
|
||
|
*
|
||
|
* SUBROUTINE SGELSX( M, N, NRHS, A, LDA, B, LDB, JPVT, RCOND, RANK,
|
||
|
* WORK, INFO )
|
||
|
*
|
||
|
* .. Scalar Arguments ..
|
||
|
* INTEGER INFO, LDA, LDB, M, N, NRHS, RANK
|
||
|
* REAL RCOND
|
||
|
* ..
|
||
|
* .. Array Arguments ..
|
||
|
* INTEGER JPVT( * )
|
||
|
* REAL A( LDA, * ), B( LDB, * ), WORK( * )
|
||
|
* ..
|
||
|
*
|
||
|
*
|
||
|
*> \par Purpose:
|
||
|
* =============
|
||
|
*>
|
||
|
*> \verbatim
|
||
|
*>
|
||
|
*> This routine is deprecated and has been replaced by routine SGELSY.
|
||
|
*>
|
||
|
*> SGELSX computes the minimum-norm solution to a real linear least
|
||
|
*> squares problem:
|
||
|
*> minimize || A * X - B ||
|
||
|
*> using a complete orthogonal factorization of A. A is an M-by-N
|
||
|
*> matrix which may be rank-deficient.
|
||
|
*>
|
||
|
*> Several right hand side vectors b and solution vectors x can be
|
||
|
*> handled in a single call; they are stored as the columns of the
|
||
|
*> M-by-NRHS right hand side matrix B and the N-by-NRHS solution
|
||
|
*> matrix X.
|
||
|
*>
|
||
|
*> The routine first computes a QR factorization with column pivoting:
|
||
|
*> A * P = Q * [ R11 R12 ]
|
||
|
*> [ 0 R22 ]
|
||
|
*> with R11 defined as the largest leading submatrix whose estimated
|
||
|
*> condition number is less than 1/RCOND. The order of R11, RANK,
|
||
|
*> is the effective rank of A.
|
||
|
*>
|
||
|
*> Then, R22 is considered to be negligible, and R12 is annihilated
|
||
|
*> by orthogonal transformations from the right, arriving at the
|
||
|
*> complete orthogonal factorization:
|
||
|
*> A * P = Q * [ T11 0 ] * Z
|
||
|
*> [ 0 0 ]
|
||
|
*> The minimum-norm solution is then
|
||
|
*> X = P * Z**T [ inv(T11)*Q1**T*B ]
|
||
|
*> [ 0 ]
|
||
|
*> where Q1 consists of the first RANK columns of Q.
|
||
|
*> \endverbatim
|
||
|
*
|
||
|
* Arguments:
|
||
|
* ==========
|
||
|
*
|
||
|
*> \param[in] M
|
||
|
*> \verbatim
|
||
|
*> M is INTEGER
|
||
|
*> The number of rows of the matrix A. M >= 0.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] N
|
||
|
*> \verbatim
|
||
|
*> N is INTEGER
|
||
|
*> The number of columns of the matrix A. N >= 0.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] NRHS
|
||
|
*> \verbatim
|
||
|
*> NRHS is INTEGER
|
||
|
*> The number of right hand sides, i.e., the number of
|
||
|
*> columns of matrices B and X. NRHS >= 0.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in,out] A
|
||
|
*> \verbatim
|
||
|
*> A is REAL array, dimension (LDA,N)
|
||
|
*> On entry, the M-by-N matrix A.
|
||
|
*> On exit, A has been overwritten by details of its
|
||
|
*> complete orthogonal factorization.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] LDA
|
||
|
*> \verbatim
|
||
|
*> LDA is INTEGER
|
||
|
*> The leading dimension of the array A. LDA >= max(1,M).
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in,out] B
|
||
|
*> \verbatim
|
||
|
*> B is REAL array, dimension (LDB,NRHS)
|
||
|
*> On entry, the M-by-NRHS right hand side matrix B.
|
||
|
*> On exit, the N-by-NRHS solution matrix X.
|
||
|
*> If m >= n and RANK = n, the residual sum-of-squares for
|
||
|
*> the solution in the i-th column is given by the sum of
|
||
|
*> squares of elements N+1:M in that column.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] LDB
|
||
|
*> \verbatim
|
||
|
*> LDB is INTEGER
|
||
|
*> The leading dimension of the array B. LDB >= max(1,M,N).
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in,out] JPVT
|
||
|
*> \verbatim
|
||
|
*> JPVT is INTEGER array, dimension (N)
|
||
|
*> On entry, if JPVT(i) .ne. 0, the i-th column of A is an
|
||
|
*> initial column, otherwise it is a free column. Before
|
||
|
*> the QR factorization of A, all initial columns are
|
||
|
*> permuted to the leading positions; only the remaining
|
||
|
*> free columns are moved as a result of column pivoting
|
||
|
*> during the factorization.
|
||
|
*> On exit, if JPVT(i) = k, then the i-th column of A*P
|
||
|
*> was the k-th column of A.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] RCOND
|
||
|
*> \verbatim
|
||
|
*> RCOND is REAL
|
||
|
*> RCOND is used to determine the effective rank of A, which
|
||
|
*> is defined as the order of the largest leading triangular
|
||
|
*> submatrix R11 in the QR factorization with pivoting of A,
|
||
|
*> whose estimated condition number < 1/RCOND.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] RANK
|
||
|
*> \verbatim
|
||
|
*> RANK is INTEGER
|
||
|
*> The effective rank of A, i.e., the order of the submatrix
|
||
|
*> R11. This is the same as the order of the submatrix T11
|
||
|
*> in the complete orthogonal factorization of A.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] WORK
|
||
|
*> \verbatim
|
||
|
*> WORK is REAL array, dimension
|
||
|
*> (max( min(M,N)+3*N, 2*min(M,N)+NRHS )),
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] INFO
|
||
|
*> \verbatim
|
||
|
*> INFO is INTEGER
|
||
|
*> = 0: successful exit
|
||
|
*> < 0: if INFO = -i, the i-th argument had an illegal value
|
||
|
*> \endverbatim
|
||
|
*
|
||
|
* Authors:
|
||
|
* ========
|
||
|
*
|
||
|
*> \author Univ. of Tennessee
|
||
|
*> \author Univ. of California Berkeley
|
||
|
*> \author Univ. of Colorado Denver
|
||
|
*> \author NAG Ltd.
|
||
|
*
|
||
|
*> \ingroup realGEsolve
|
||
|
*
|
||
|
* =====================================================================
|
||
|
SUBROUTINE SGELSX( M, N, NRHS, A, LDA, B, LDB, JPVT, RCOND, RANK,
|
||
|
$ WORK, INFO )
|
||
|
*
|
||
|
* -- LAPACK driver routine --
|
||
|
* -- LAPACK is a software package provided by Univ. of Tennessee, --
|
||
|
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
||
|
*
|
||
|
* .. Scalar Arguments ..
|
||
|
INTEGER INFO, LDA, LDB, M, N, NRHS, RANK
|
||
|
REAL RCOND
|
||
|
* ..
|
||
|
* .. Array Arguments ..
|
||
|
INTEGER JPVT( * )
|
||
|
REAL A( LDA, * ), B( LDB, * ), WORK( * )
|
||
|
* ..
|
||
|
*
|
||
|
* =====================================================================
|
||
|
*
|
||
|
* .. Parameters ..
|
||
|
INTEGER IMAX, IMIN
|
||
|
PARAMETER ( IMAX = 1, IMIN = 2 )
|
||
|
REAL ZERO, ONE, DONE, NTDONE
|
||
|
PARAMETER ( ZERO = 0.0E0, ONE = 1.0E0, DONE = ZERO,
|
||
|
$ NTDONE = ONE )
|
||
|
* ..
|
||
|
* .. Local Scalars ..
|
||
|
INTEGER I, IASCL, IBSCL, ISMAX, ISMIN, J, K, MN
|
||
|
REAL ANRM, BIGNUM, BNRM, C1, C2, S1, S2, SMAX,
|
||
|
$ SMAXPR, SMIN, SMINPR, SMLNUM, T1, T2
|
||
|
* ..
|
||
|
* .. External Functions ..
|
||
|
REAL SLAMCH, SLANGE
|
||
|
EXTERNAL SLAMCH, SLANGE
|
||
|
* ..
|
||
|
* .. External Subroutines ..
|
||
|
EXTERNAL SGEQPF, SLAIC1, SLASCL, SLASET, SLATZM,
|
||
|
$ SORM2R, STRSM, STZRQF, XERBLA
|
||
|
* ..
|
||
|
* .. Intrinsic Functions ..
|
||
|
INTRINSIC ABS, MAX, MIN
|
||
|
* ..
|
||
|
* .. Executable Statements ..
|
||
|
*
|
||
|
MN = MIN( M, N )
|
||
|
ISMIN = MN + 1
|
||
|
ISMAX = 2*MN + 1
|
||
|
*
|
||
|
* Test the input arguments.
|
||
|
*
|
||
|
INFO = 0
|
||
|
IF( M.LT.0 ) THEN
|
||
|
INFO = -1
|
||
|
ELSE IF( N.LT.0 ) THEN
|
||
|
INFO = -2
|
||
|
ELSE IF( NRHS.LT.0 ) THEN
|
||
|
INFO = -3
|
||
|
ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
|
||
|
INFO = -5
|
||
|
ELSE IF( LDB.LT.MAX( 1, M, N ) ) THEN
|
||
|
INFO = -7
|
||
|
END IF
|
||
|
*
|
||
|
IF( INFO.NE.0 ) THEN
|
||
|
CALL XERBLA( 'SGELSX', -INFO )
|
||
|
RETURN
|
||
|
END IF
|
||
|
*
|
||
|
* Quick return if possible
|
||
|
*
|
||
|
IF( MIN( M, N, NRHS ).EQ.0 ) THEN
|
||
|
RANK = 0
|
||
|
RETURN
|
||
|
END IF
|
||
|
*
|
||
|
* Get machine parameters
|
||
|
*
|
||
|
SMLNUM = SLAMCH( 'S' ) / SLAMCH( 'P' )
|
||
|
BIGNUM = ONE / SMLNUM
|
||
|
*
|
||
|
* Scale A, B if max elements outside range [SMLNUM,BIGNUM]
|
||
|
*
|
||
|
ANRM = SLANGE( 'M', M, N, A, LDA, WORK )
|
||
|
IASCL = 0
|
||
|
IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN
|
||
|
*
|
||
|
* Scale matrix norm up to SMLNUM
|
||
|
*
|
||
|
CALL SLASCL( 'G', 0, 0, ANRM, SMLNUM, M, N, A, LDA, INFO )
|
||
|
IASCL = 1
|
||
|
ELSE IF( ANRM.GT.BIGNUM ) THEN
|
||
|
*
|
||
|
* Scale matrix norm down to BIGNUM
|
||
|
*
|
||
|
CALL SLASCL( 'G', 0, 0, ANRM, BIGNUM, M, N, A, LDA, INFO )
|
||
|
IASCL = 2
|
||
|
ELSE IF( ANRM.EQ.ZERO ) THEN
|
||
|
*
|
||
|
* Matrix all zero. Return zero solution.
|
||
|
*
|
||
|
CALL SLASET( 'F', MAX( M, N ), NRHS, ZERO, ZERO, B, LDB )
|
||
|
RANK = 0
|
||
|
GO TO 100
|
||
|
END IF
|
||
|
*
|
||
|
BNRM = SLANGE( 'M', M, NRHS, B, LDB, WORK )
|
||
|
IBSCL = 0
|
||
|
IF( BNRM.GT.ZERO .AND. BNRM.LT.SMLNUM ) THEN
|
||
|
*
|
||
|
* Scale matrix norm up to SMLNUM
|
||
|
*
|
||
|
CALL SLASCL( 'G', 0, 0, BNRM, SMLNUM, M, NRHS, B, LDB, INFO )
|
||
|
IBSCL = 1
|
||
|
ELSE IF( BNRM.GT.BIGNUM ) THEN
|
||
|
*
|
||
|
* Scale matrix norm down to BIGNUM
|
||
|
*
|
||
|
CALL SLASCL( 'G', 0, 0, BNRM, BIGNUM, M, NRHS, B, LDB, INFO )
|
||
|
IBSCL = 2
|
||
|
END IF
|
||
|
*
|
||
|
* Compute QR factorization with column pivoting of A:
|
||
|
* A * P = Q * R
|
||
|
*
|
||
|
CALL SGEQPF( M, N, A, LDA, JPVT, WORK( 1 ), WORK( MN+1 ), INFO )
|
||
|
*
|
||
|
* workspace 3*N. Details of Householder rotations stored
|
||
|
* in WORK(1:MN).
|
||
|
*
|
||
|
* Determine RANK using incremental condition estimation
|
||
|
*
|
||
|
WORK( ISMIN ) = ONE
|
||
|
WORK( ISMAX ) = ONE
|
||
|
SMAX = ABS( A( 1, 1 ) )
|
||
|
SMIN = SMAX
|
||
|
IF( ABS( A( 1, 1 ) ).EQ.ZERO ) THEN
|
||
|
RANK = 0
|
||
|
CALL SLASET( 'F', MAX( M, N ), NRHS, ZERO, ZERO, B, LDB )
|
||
|
GO TO 100
|
||
|
ELSE
|
||
|
RANK = 1
|
||
|
END IF
|
||
|
*
|
||
|
10 CONTINUE
|
||
|
IF( RANK.LT.MN ) THEN
|
||
|
I = RANK + 1
|
||
|
CALL SLAIC1( IMIN, RANK, WORK( ISMIN ), SMIN, A( 1, I ),
|
||
|
$ A( I, I ), SMINPR, S1, C1 )
|
||
|
CALL SLAIC1( IMAX, RANK, WORK( ISMAX ), SMAX, A( 1, I ),
|
||
|
$ A( I, I ), SMAXPR, S2, C2 )
|
||
|
*
|
||
|
IF( SMAXPR*RCOND.LE.SMINPR ) THEN
|
||
|
DO 20 I = 1, RANK
|
||
|
WORK( ISMIN+I-1 ) = S1*WORK( ISMIN+I-1 )
|
||
|
WORK( ISMAX+I-1 ) = S2*WORK( ISMAX+I-1 )
|
||
|
20 CONTINUE
|
||
|
WORK( ISMIN+RANK ) = C1
|
||
|
WORK( ISMAX+RANK ) = C2
|
||
|
SMIN = SMINPR
|
||
|
SMAX = SMAXPR
|
||
|
RANK = RANK + 1
|
||
|
GO TO 10
|
||
|
END IF
|
||
|
END IF
|
||
|
*
|
||
|
* Logically partition R = [ R11 R12 ]
|
||
|
* [ 0 R22 ]
|
||
|
* where R11 = R(1:RANK,1:RANK)
|
||
|
*
|
||
|
* [R11,R12] = [ T11, 0 ] * Y
|
||
|
*
|
||
|
IF( RANK.LT.N )
|
||
|
$ CALL STZRQF( RANK, N, A, LDA, WORK( MN+1 ), INFO )
|
||
|
*
|
||
|
* Details of Householder rotations stored in WORK(MN+1:2*MN)
|
||
|
*
|
||
|
* B(1:M,1:NRHS) := Q**T * B(1:M,1:NRHS)
|
||
|
*
|
||
|
CALL SORM2R( 'Left', 'Transpose', M, NRHS, MN, A, LDA, WORK( 1 ),
|
||
|
$ B, LDB, WORK( 2*MN+1 ), INFO )
|
||
|
*
|
||
|
* workspace NRHS
|
||
|
*
|
||
|
* B(1:RANK,1:NRHS) := inv(T11) * B(1:RANK,1:NRHS)
|
||
|
*
|
||
|
CALL STRSM( 'Left', 'Upper', 'No transpose', 'Non-unit', RANK,
|
||
|
$ NRHS, ONE, A, LDA, B, LDB )
|
||
|
*
|
||
|
DO 40 I = RANK + 1, N
|
||
|
DO 30 J = 1, NRHS
|
||
|
B( I, J ) = ZERO
|
||
|
30 CONTINUE
|
||
|
40 CONTINUE
|
||
|
*
|
||
|
* B(1:N,1:NRHS) := Y**T * B(1:N,1:NRHS)
|
||
|
*
|
||
|
IF( RANK.LT.N ) THEN
|
||
|
DO 50 I = 1, RANK
|
||
|
CALL SLATZM( 'Left', N-RANK+1, NRHS, A( I, RANK+1 ), LDA,
|
||
|
$ WORK( MN+I ), B( I, 1 ), B( RANK+1, 1 ), LDB,
|
||
|
$ WORK( 2*MN+1 ) )
|
||
|
50 CONTINUE
|
||
|
END IF
|
||
|
*
|
||
|
* workspace NRHS
|
||
|
*
|
||
|
* B(1:N,1:NRHS) := P * B(1:N,1:NRHS)
|
||
|
*
|
||
|
DO 90 J = 1, NRHS
|
||
|
DO 60 I = 1, N
|
||
|
WORK( 2*MN+I ) = NTDONE
|
||
|
60 CONTINUE
|
||
|
DO 80 I = 1, N
|
||
|
IF( WORK( 2*MN+I ).EQ.NTDONE ) THEN
|
||
|
IF( JPVT( I ).NE.I ) THEN
|
||
|
K = I
|
||
|
T1 = B( K, J )
|
||
|
T2 = B( JPVT( K ), J )
|
||
|
70 CONTINUE
|
||
|
B( JPVT( K ), J ) = T1
|
||
|
WORK( 2*MN+K ) = DONE
|
||
|
T1 = T2
|
||
|
K = JPVT( K )
|
||
|
T2 = B( JPVT( K ), J )
|
||
|
IF( JPVT( K ).NE.I )
|
||
|
$ GO TO 70
|
||
|
B( I, J ) = T1
|
||
|
WORK( 2*MN+K ) = DONE
|
||
|
END IF
|
||
|
END IF
|
||
|
80 CONTINUE
|
||
|
90 CONTINUE
|
||
|
*
|
||
|
* Undo scaling
|
||
|
*
|
||
|
IF( IASCL.EQ.1 ) THEN
|
||
|
CALL SLASCL( 'G', 0, 0, ANRM, SMLNUM, N, NRHS, B, LDB, INFO )
|
||
|
CALL SLASCL( 'U', 0, 0, SMLNUM, ANRM, RANK, RANK, A, LDA,
|
||
|
$ INFO )
|
||
|
ELSE IF( IASCL.EQ.2 ) THEN
|
||
|
CALL SLASCL( 'G', 0, 0, ANRM, BIGNUM, N, NRHS, B, LDB, INFO )
|
||
|
CALL SLASCL( 'U', 0, 0, BIGNUM, ANRM, RANK, RANK, A, LDA,
|
||
|
$ INFO )
|
||
|
END IF
|
||
|
IF( IBSCL.EQ.1 ) THEN
|
||
|
CALL SLASCL( 'G', 0, 0, SMLNUM, BNRM, N, NRHS, B, LDB, INFO )
|
||
|
ELSE IF( IBSCL.EQ.2 ) THEN
|
||
|
CALL SLASCL( 'G', 0, 0, BIGNUM, BNRM, N, NRHS, B, LDB, INFO )
|
||
|
END IF
|
||
|
*
|
||
|
100 CONTINUE
|
||
|
*
|
||
|
RETURN
|
||
|
*
|
||
|
* End of SGELSX
|
||
|
*
|
||
|
END
|