You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
239 lines
6.8 KiB
239 lines
6.8 KiB
2 years ago
|
*> \brief \b ZTZRQF
|
||
|
*
|
||
|
* =========== DOCUMENTATION ===========
|
||
|
*
|
||
|
* Online html documentation available at
|
||
|
* http://www.netlib.org/lapack/explore-html/
|
||
|
*
|
||
|
*> \htmlonly
|
||
|
*> Download ZTZRQF + dependencies
|
||
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/ztzrqf.f">
|
||
|
*> [TGZ]</a>
|
||
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/ztzrqf.f">
|
||
|
*> [ZIP]</a>
|
||
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/ztzrqf.f">
|
||
|
*> [TXT]</a>
|
||
|
*> \endhtmlonly
|
||
|
*
|
||
|
* Definition:
|
||
|
* ===========
|
||
|
*
|
||
|
* SUBROUTINE ZTZRQF( M, N, A, LDA, TAU, INFO )
|
||
|
*
|
||
|
* .. Scalar Arguments ..
|
||
|
* INTEGER INFO, LDA, M, N
|
||
|
* ..
|
||
|
* .. Array Arguments ..
|
||
|
* COMPLEX*16 A( LDA, * ), TAU( * )
|
||
|
* ..
|
||
|
*
|
||
|
*
|
||
|
*> \par Purpose:
|
||
|
* =============
|
||
|
*>
|
||
|
*> \verbatim
|
||
|
*>
|
||
|
*> This routine is deprecated and has been replaced by routine ZTZRZF.
|
||
|
*>
|
||
|
*> ZTZRQF reduces the M-by-N ( M<=N ) complex upper trapezoidal matrix A
|
||
|
*> to upper triangular form by means of unitary transformations.
|
||
|
*>
|
||
|
*> The upper trapezoidal matrix A is factored as
|
||
|
*>
|
||
|
*> A = ( R 0 ) * Z,
|
||
|
*>
|
||
|
*> where Z is an N-by-N unitary matrix and R is an M-by-M upper
|
||
|
*> triangular matrix.
|
||
|
*> \endverbatim
|
||
|
*
|
||
|
* Arguments:
|
||
|
* ==========
|
||
|
*
|
||
|
*> \param[in] M
|
||
|
*> \verbatim
|
||
|
*> M is INTEGER
|
||
|
*> The number of rows of the matrix A. M >= 0.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] N
|
||
|
*> \verbatim
|
||
|
*> N is INTEGER
|
||
|
*> The number of columns of the matrix A. N >= M.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in,out] A
|
||
|
*> \verbatim
|
||
|
*> A is COMPLEX*16 array, dimension (LDA,N)
|
||
|
*> On entry, the leading M-by-N upper trapezoidal part of the
|
||
|
*> array A must contain the matrix to be factorized.
|
||
|
*> On exit, the leading M-by-M upper triangular part of A
|
||
|
*> contains the upper triangular matrix R, and elements M+1 to
|
||
|
*> N of the first M rows of A, with the array TAU, represent the
|
||
|
*> unitary matrix Z as a product of M elementary reflectors.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] LDA
|
||
|
*> \verbatim
|
||
|
*> LDA is INTEGER
|
||
|
*> The leading dimension of the array A. LDA >= max(1,M).
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] TAU
|
||
|
*> \verbatim
|
||
|
*> TAU is COMPLEX*16 array, dimension (M)
|
||
|
*> The scalar factors of the elementary reflectors.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] INFO
|
||
|
*> \verbatim
|
||
|
*> INFO is INTEGER
|
||
|
*> = 0: successful exit
|
||
|
*> < 0: if INFO = -i, the i-th argument had an illegal value
|
||
|
*> \endverbatim
|
||
|
*
|
||
|
* Authors:
|
||
|
* ========
|
||
|
*
|
||
|
*> \author Univ. of Tennessee
|
||
|
*> \author Univ. of California Berkeley
|
||
|
*> \author Univ. of Colorado Denver
|
||
|
*> \author NAG Ltd.
|
||
|
*
|
||
|
*> \ingroup complex16OTHERcomputational
|
||
|
*
|
||
|
*> \par Further Details:
|
||
|
* =====================
|
||
|
*>
|
||
|
*> \verbatim
|
||
|
*>
|
||
|
*> The factorization is obtained by Householder's method. The kth
|
||
|
*> transformation matrix, Z( k ), whose conjugate transpose is used to
|
||
|
*> introduce zeros into the (m - k + 1)th row of A, is given in the form
|
||
|
*>
|
||
|
*> Z( k ) = ( I 0 ),
|
||
|
*> ( 0 T( k ) )
|
||
|
*>
|
||
|
*> where
|
||
|
*>
|
||
|
*> T( k ) = I - tau*u( k )*u( k )**H, u( k ) = ( 1 ),
|
||
|
*> ( 0 )
|
||
|
*> ( z( k ) )
|
||
|
*>
|
||
|
*> tau is a scalar and z( k ) is an ( n - m ) element vector.
|
||
|
*> tau and z( k ) are chosen to annihilate the elements of the kth row
|
||
|
*> of X.
|
||
|
*>
|
||
|
*> The scalar tau is returned in the kth element of TAU and the vector
|
||
|
*> u( k ) in the kth row of A, such that the elements of z( k ) are
|
||
|
*> in a( k, m + 1 ), ..., a( k, n ). The elements of R are returned in
|
||
|
*> the upper triangular part of A.
|
||
|
*>
|
||
|
*> Z is given by
|
||
|
*>
|
||
|
*> Z = Z( 1 ) * Z( 2 ) * ... * Z( m ).
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
* =====================================================================
|
||
|
SUBROUTINE ZTZRQF( M, N, A, LDA, TAU, INFO )
|
||
|
*
|
||
|
* -- LAPACK computational routine --
|
||
|
* -- LAPACK is a software package provided by Univ. of Tennessee, --
|
||
|
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
||
|
*
|
||
|
* .. Scalar Arguments ..
|
||
|
INTEGER INFO, LDA, M, N
|
||
|
* ..
|
||
|
* .. Array Arguments ..
|
||
|
COMPLEX*16 A( LDA, * ), TAU( * )
|
||
|
* ..
|
||
|
*
|
||
|
* =====================================================================
|
||
|
*
|
||
|
* .. Parameters ..
|
||
|
COMPLEX*16 CONE, CZERO
|
||
|
PARAMETER ( CONE = ( 1.0D+0, 0.0D+0 ),
|
||
|
$ CZERO = ( 0.0D+0, 0.0D+0 ) )
|
||
|
* ..
|
||
|
* .. Local Scalars ..
|
||
|
INTEGER I, K, M1
|
||
|
COMPLEX*16 ALPHA
|
||
|
* ..
|
||
|
* .. Intrinsic Functions ..
|
||
|
INTRINSIC DCONJG, MAX, MIN
|
||
|
* ..
|
||
|
* .. External Subroutines ..
|
||
|
EXTERNAL XERBLA, ZAXPY, ZCOPY, ZGEMV, ZGERC, ZLACGV,
|
||
|
$ ZLARFG
|
||
|
* ..
|
||
|
* .. Executable Statements ..
|
||
|
*
|
||
|
* Test the input parameters.
|
||
|
*
|
||
|
INFO = 0
|
||
|
IF( M.LT.0 ) THEN
|
||
|
INFO = -1
|
||
|
ELSE IF( N.LT.M ) THEN
|
||
|
INFO = -2
|
||
|
ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
|
||
|
INFO = -4
|
||
|
END IF
|
||
|
IF( INFO.NE.0 ) THEN
|
||
|
CALL XERBLA( 'ZTZRQF', -INFO )
|
||
|
RETURN
|
||
|
END IF
|
||
|
*
|
||
|
* Perform the factorization.
|
||
|
*
|
||
|
IF( M.EQ.0 )
|
||
|
$ RETURN
|
||
|
IF( M.EQ.N ) THEN
|
||
|
DO 10 I = 1, N
|
||
|
TAU( I ) = CZERO
|
||
|
10 CONTINUE
|
||
|
ELSE
|
||
|
M1 = MIN( M+1, N )
|
||
|
DO 20 K = M, 1, -1
|
||
|
*
|
||
|
* Use a Householder reflection to zero the kth row of A.
|
||
|
* First set up the reflection.
|
||
|
*
|
||
|
A( K, K ) = DCONJG( A( K, K ) )
|
||
|
CALL ZLACGV( N-M, A( K, M1 ), LDA )
|
||
|
ALPHA = A( K, K )
|
||
|
CALL ZLARFG( N-M+1, ALPHA, A( K, M1 ), LDA, TAU( K ) )
|
||
|
A( K, K ) = ALPHA
|
||
|
TAU( K ) = DCONJG( TAU( K ) )
|
||
|
*
|
||
|
IF( TAU( K ).NE.CZERO .AND. K.GT.1 ) THEN
|
||
|
*
|
||
|
* We now perform the operation A := A*P( k )**H.
|
||
|
*
|
||
|
* Use the first ( k - 1 ) elements of TAU to store a( k ),
|
||
|
* where a( k ) consists of the first ( k - 1 ) elements of
|
||
|
* the kth column of A. Also let B denote the first
|
||
|
* ( k - 1 ) rows of the last ( n - m ) columns of A.
|
||
|
*
|
||
|
CALL ZCOPY( K-1, A( 1, K ), 1, TAU, 1 )
|
||
|
*
|
||
|
* Form w = a( k ) + B*z( k ) in TAU.
|
||
|
*
|
||
|
CALL ZGEMV( 'No transpose', K-1, N-M, CONE, A( 1, M1 ),
|
||
|
$ LDA, A( K, M1 ), LDA, CONE, TAU, 1 )
|
||
|
*
|
||
|
* Now form a( k ) := a( k ) - conjg(tau)*w
|
||
|
* and B := B - conjg(tau)*w*z( k )**H.
|
||
|
*
|
||
|
CALL ZAXPY( K-1, -DCONJG( TAU( K ) ), TAU, 1, A( 1, K ),
|
||
|
$ 1 )
|
||
|
CALL ZGERC( K-1, N-M, -DCONJG( TAU( K ) ), TAU, 1,
|
||
|
$ A( K, M1 ), LDA, A( 1, M1 ), LDA )
|
||
|
END IF
|
||
|
20 CONTINUE
|
||
|
END IF
|
||
|
*
|
||
|
RETURN
|
||
|
*
|
||
|
* End of ZTZRQF
|
||
|
*
|
||
|
END
|