You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
318 lines
8.7 KiB
318 lines
8.7 KiB
2 years ago
|
*> \brief \b CGBCON
|
||
|
*
|
||
|
* =========== DOCUMENTATION ===========
|
||
|
*
|
||
|
* Online html documentation available at
|
||
|
* http://www.netlib.org/lapack/explore-html/
|
||
|
*
|
||
|
*> \htmlonly
|
||
|
*> Download CGBCON + dependencies
|
||
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cgbcon.f">
|
||
|
*> [TGZ]</a>
|
||
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cgbcon.f">
|
||
|
*> [ZIP]</a>
|
||
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cgbcon.f">
|
||
|
*> [TXT]</a>
|
||
|
*> \endhtmlonly
|
||
|
*
|
||
|
* Definition:
|
||
|
* ===========
|
||
|
*
|
||
|
* SUBROUTINE CGBCON( NORM, N, KL, KU, AB, LDAB, IPIV, ANORM, RCOND,
|
||
|
* WORK, RWORK, INFO )
|
||
|
*
|
||
|
* .. Scalar Arguments ..
|
||
|
* CHARACTER NORM
|
||
|
* INTEGER INFO, KL, KU, LDAB, N
|
||
|
* REAL ANORM, RCOND
|
||
|
* ..
|
||
|
* .. Array Arguments ..
|
||
|
* INTEGER IPIV( * )
|
||
|
* REAL RWORK( * )
|
||
|
* COMPLEX AB( LDAB, * ), WORK( * )
|
||
|
* ..
|
||
|
*
|
||
|
*
|
||
|
*> \par Purpose:
|
||
|
* =============
|
||
|
*>
|
||
|
*> \verbatim
|
||
|
*>
|
||
|
*> CGBCON estimates the reciprocal of the condition number of a complex
|
||
|
*> general band matrix A, in either the 1-norm or the infinity-norm,
|
||
|
*> using the LU factorization computed by CGBTRF.
|
||
|
*>
|
||
|
*> An estimate is obtained for norm(inv(A)), and the reciprocal of the
|
||
|
*> condition number is computed as
|
||
|
*> RCOND = 1 / ( norm(A) * norm(inv(A)) ).
|
||
|
*> \endverbatim
|
||
|
*
|
||
|
* Arguments:
|
||
|
* ==========
|
||
|
*
|
||
|
*> \param[in] NORM
|
||
|
*> \verbatim
|
||
|
*> NORM is CHARACTER*1
|
||
|
*> Specifies whether the 1-norm condition number or the
|
||
|
*> infinity-norm condition number is required:
|
||
|
*> = '1' or 'O': 1-norm;
|
||
|
*> = 'I': Infinity-norm.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] N
|
||
|
*> \verbatim
|
||
|
*> N is INTEGER
|
||
|
*> The order of the matrix A. N >= 0.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] KL
|
||
|
*> \verbatim
|
||
|
*> KL is INTEGER
|
||
|
*> The number of subdiagonals within the band of A. KL >= 0.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] KU
|
||
|
*> \verbatim
|
||
|
*> KU is INTEGER
|
||
|
*> The number of superdiagonals within the band of A. KU >= 0.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] AB
|
||
|
*> \verbatim
|
||
|
*> AB is COMPLEX array, dimension (LDAB,N)
|
||
|
*> Details of the LU factorization of the band matrix A, as
|
||
|
*> computed by CGBTRF. U is stored as an upper triangular band
|
||
|
*> matrix with KL+KU superdiagonals in rows 1 to KL+KU+1, and
|
||
|
*> the multipliers used during the factorization are stored in
|
||
|
*> rows KL+KU+2 to 2*KL+KU+1.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] LDAB
|
||
|
*> \verbatim
|
||
|
*> LDAB is INTEGER
|
||
|
*> The leading dimension of the array AB. LDAB >= 2*KL+KU+1.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] IPIV
|
||
|
*> \verbatim
|
||
|
*> IPIV is INTEGER array, dimension (N)
|
||
|
*> The pivot indices; for 1 <= i <= N, row i of the matrix was
|
||
|
*> interchanged with row IPIV(i).
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] ANORM
|
||
|
*> \verbatim
|
||
|
*> ANORM is REAL
|
||
|
*> If NORM = '1' or 'O', the 1-norm of the original matrix A.
|
||
|
*> If NORM = 'I', the infinity-norm of the original matrix A.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] RCOND
|
||
|
*> \verbatim
|
||
|
*> RCOND is REAL
|
||
|
*> The reciprocal of the condition number of the matrix A,
|
||
|
*> computed as RCOND = 1/(norm(A) * norm(inv(A))).
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] WORK
|
||
|
*> \verbatim
|
||
|
*> WORK is COMPLEX array, dimension (2*N)
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] RWORK
|
||
|
*> \verbatim
|
||
|
*> RWORK is REAL array, dimension (N)
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] INFO
|
||
|
*> \verbatim
|
||
|
*> INFO is INTEGER
|
||
|
*> = 0: successful exit
|
||
|
*> < 0: if INFO = -i, the i-th argument had an illegal value
|
||
|
*> \endverbatim
|
||
|
*
|
||
|
* Authors:
|
||
|
* ========
|
||
|
*
|
||
|
*> \author Univ. of Tennessee
|
||
|
*> \author Univ. of California Berkeley
|
||
|
*> \author Univ. of Colorado Denver
|
||
|
*> \author NAG Ltd.
|
||
|
*
|
||
|
*> \ingroup complexGBcomputational
|
||
|
*
|
||
|
* =====================================================================
|
||
|
SUBROUTINE CGBCON( NORM, N, KL, KU, AB, LDAB, IPIV, ANORM, RCOND,
|
||
|
$ WORK, RWORK, INFO )
|
||
|
*
|
||
|
* -- LAPACK computational routine --
|
||
|
* -- LAPACK is a software package provided by Univ. of Tennessee, --
|
||
|
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
||
|
*
|
||
|
* .. Scalar Arguments ..
|
||
|
CHARACTER NORM
|
||
|
INTEGER INFO, KL, KU, LDAB, N
|
||
|
REAL ANORM, RCOND
|
||
|
* ..
|
||
|
* .. Array Arguments ..
|
||
|
INTEGER IPIV( * )
|
||
|
REAL RWORK( * )
|
||
|
COMPLEX AB( LDAB, * ), WORK( * )
|
||
|
* ..
|
||
|
*
|
||
|
* =====================================================================
|
||
|
*
|
||
|
* .. Parameters ..
|
||
|
REAL ONE, ZERO
|
||
|
PARAMETER ( ONE = 1.0E+0, ZERO = 0.0E+0 )
|
||
|
* ..
|
||
|
* .. Local Scalars ..
|
||
|
LOGICAL LNOTI, ONENRM
|
||
|
CHARACTER NORMIN
|
||
|
INTEGER IX, J, JP, KASE, KASE1, KD, LM
|
||
|
REAL AINVNM, SCALE, SMLNUM
|
||
|
COMPLEX T, ZDUM
|
||
|
* ..
|
||
|
* .. Local Arrays ..
|
||
|
INTEGER ISAVE( 3 )
|
||
|
* ..
|
||
|
* .. External Functions ..
|
||
|
LOGICAL LSAME
|
||
|
INTEGER ICAMAX
|
||
|
REAL SLAMCH
|
||
|
COMPLEX CDOTC
|
||
|
EXTERNAL LSAME, ICAMAX, SLAMCH, CDOTC
|
||
|
* ..
|
||
|
* .. External Subroutines ..
|
||
|
EXTERNAL CAXPY, CLACN2, CLATBS, CSRSCL, XERBLA
|
||
|
* ..
|
||
|
* .. Intrinsic Functions ..
|
||
|
INTRINSIC ABS, AIMAG, MIN, REAL
|
||
|
* ..
|
||
|
* .. Statement Functions ..
|
||
|
REAL CABS1
|
||
|
* ..
|
||
|
* .. Statement Function definitions ..
|
||
|
CABS1( ZDUM ) = ABS( REAL( ZDUM ) ) + ABS( AIMAG( ZDUM ) )
|
||
|
* ..
|
||
|
* .. Executable Statements ..
|
||
|
*
|
||
|
* Test the input parameters.
|
||
|
*
|
||
|
INFO = 0
|
||
|
ONENRM = NORM.EQ.'1' .OR. LSAME( NORM, 'O' )
|
||
|
IF( .NOT.ONENRM .AND. .NOT.LSAME( NORM, 'I' ) ) THEN
|
||
|
INFO = -1
|
||
|
ELSE IF( N.LT.0 ) THEN
|
||
|
INFO = -2
|
||
|
ELSE IF( KL.LT.0 ) THEN
|
||
|
INFO = -3
|
||
|
ELSE IF( KU.LT.0 ) THEN
|
||
|
INFO = -4
|
||
|
ELSE IF( LDAB.LT.2*KL+KU+1 ) THEN
|
||
|
INFO = -6
|
||
|
ELSE IF( ANORM.LT.ZERO ) THEN
|
||
|
INFO = -8
|
||
|
END IF
|
||
|
IF( INFO.NE.0 ) THEN
|
||
|
CALL XERBLA( 'CGBCON', -INFO )
|
||
|
RETURN
|
||
|
END IF
|
||
|
*
|
||
|
* Quick return if possible
|
||
|
*
|
||
|
RCOND = ZERO
|
||
|
IF( N.EQ.0 ) THEN
|
||
|
RCOND = ONE
|
||
|
RETURN
|
||
|
ELSE IF( ANORM.EQ.ZERO ) THEN
|
||
|
RETURN
|
||
|
END IF
|
||
|
*
|
||
|
SMLNUM = SLAMCH( 'Safe minimum' )
|
||
|
*
|
||
|
* Estimate the norm of inv(A).
|
||
|
*
|
||
|
AINVNM = ZERO
|
||
|
NORMIN = 'N'
|
||
|
IF( ONENRM ) THEN
|
||
|
KASE1 = 1
|
||
|
ELSE
|
||
|
KASE1 = 2
|
||
|
END IF
|
||
|
KD = KL + KU + 1
|
||
|
LNOTI = KL.GT.0
|
||
|
KASE = 0
|
||
|
10 CONTINUE
|
||
|
CALL CLACN2( N, WORK( N+1 ), WORK, AINVNM, KASE, ISAVE )
|
||
|
IF( KASE.NE.0 ) THEN
|
||
|
IF( KASE.EQ.KASE1 ) THEN
|
||
|
*
|
||
|
* Multiply by inv(L).
|
||
|
*
|
||
|
IF( LNOTI ) THEN
|
||
|
DO 20 J = 1, N - 1
|
||
|
LM = MIN( KL, N-J )
|
||
|
JP = IPIV( J )
|
||
|
T = WORK( JP )
|
||
|
IF( JP.NE.J ) THEN
|
||
|
WORK( JP ) = WORK( J )
|
||
|
WORK( J ) = T
|
||
|
END IF
|
||
|
CALL CAXPY( LM, -T, AB( KD+1, J ), 1, WORK( J+1 ), 1 )
|
||
|
20 CONTINUE
|
||
|
END IF
|
||
|
*
|
||
|
* Multiply by inv(U).
|
||
|
*
|
||
|
CALL CLATBS( 'Upper', 'No transpose', 'Non-unit', NORMIN, N,
|
||
|
$ KL+KU, AB, LDAB, WORK, SCALE, RWORK, INFO )
|
||
|
ELSE
|
||
|
*
|
||
|
* Multiply by inv(U**H).
|
||
|
*
|
||
|
CALL CLATBS( 'Upper', 'Conjugate transpose', 'Non-unit',
|
||
|
$ NORMIN, N, KL+KU, AB, LDAB, WORK, SCALE, RWORK,
|
||
|
$ INFO )
|
||
|
*
|
||
|
* Multiply by inv(L**H).
|
||
|
*
|
||
|
IF( LNOTI ) THEN
|
||
|
DO 30 J = N - 1, 1, -1
|
||
|
LM = MIN( KL, N-J )
|
||
|
WORK( J ) = WORK( J ) - CDOTC( LM, AB( KD+1, J ), 1,
|
||
|
$ WORK( J+1 ), 1 )
|
||
|
JP = IPIV( J )
|
||
|
IF( JP.NE.J ) THEN
|
||
|
T = WORK( JP )
|
||
|
WORK( JP ) = WORK( J )
|
||
|
WORK( J ) = T
|
||
|
END IF
|
||
|
30 CONTINUE
|
||
|
END IF
|
||
|
END IF
|
||
|
*
|
||
|
* Divide X by 1/SCALE if doing so will not cause overflow.
|
||
|
*
|
||
|
NORMIN = 'Y'
|
||
|
IF( SCALE.NE.ONE ) THEN
|
||
|
IX = ICAMAX( N, WORK, 1 )
|
||
|
IF( SCALE.LT.CABS1( WORK( IX ) )*SMLNUM .OR. SCALE.EQ.ZERO )
|
||
|
$ GO TO 40
|
||
|
CALL CSRSCL( N, SCALE, WORK, 1 )
|
||
|
END IF
|
||
|
GO TO 10
|
||
|
END IF
|
||
|
*
|
||
|
* Compute the estimate of the reciprocal condition number.
|
||
|
*
|
||
|
IF( AINVNM.NE.ZERO )
|
||
|
$ RCOND = ( ONE / AINVNM ) / ANORM
|
||
|
*
|
||
|
40 CONTINUE
|
||
|
RETURN
|
||
|
*
|
||
|
* End of CGBCON
|
||
|
*
|
||
|
END
|