You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
689 lines
30 KiB
689 lines
30 KiB
2 years ago
|
SUBROUTINE CGEDMDQ( JOBS, JOBZ, JOBR, JOBQ, JOBT, JOBF, &
|
||
|
WHTSVD, M, N, F, LDF, X, LDX, Y, &
|
||
|
LDY, NRNK, TOL, K, EIGS, &
|
||
|
Z, LDZ, RES, B, LDB, V, LDV, &
|
||
|
S, LDS, ZWORK, LZWORK, WORK, LWORK, &
|
||
|
IWORK, LIWORK, INFO )
|
||
|
! March 2023
|
||
|
!.....
|
||
|
USE iso_fortran_env
|
||
|
IMPLICIT NONE
|
||
|
INTEGER, PARAMETER :: WP = real32
|
||
|
!.....
|
||
|
! Scalar arguments
|
||
|
CHARACTER, INTENT(IN) :: JOBS, JOBZ, JOBR, JOBQ, &
|
||
|
JOBT, JOBF
|
||
|
INTEGER, INTENT(IN) :: WHTSVD, M, N, LDF, LDX, &
|
||
|
LDY, NRNK, LDZ, LDB, LDV, &
|
||
|
LDS, LZWORK, LWORK, LIWORK
|
||
|
INTEGER, INTENT(OUT) :: INFO, K
|
||
|
REAL(KIND=WP), INTENT(IN) :: TOL
|
||
|
! Array arguments
|
||
|
COMPLEX(KIND=WP), INTENT(INOUT) :: F(LDF,*)
|
||
|
COMPLEX(KIND=WP), INTENT(OUT) :: X(LDX,*), Y(LDY,*), &
|
||
|
Z(LDZ,*), B(LDB,*), &
|
||
|
V(LDV,*), S(LDS,*)
|
||
|
COMPLEX(KIND=WP), INTENT(OUT) :: EIGS(*)
|
||
|
COMPLEX(KIND=WP), INTENT(OUT) :: ZWORK(*)
|
||
|
REAL(KIND=WP), INTENT(OUT) :: RES(*)
|
||
|
REAL(KIND=WP), INTENT(OUT) :: WORK(*)
|
||
|
INTEGER, INTENT(OUT) :: IWORK(*)
|
||
|
!.....
|
||
|
! Purpose
|
||
|
! =======
|
||
|
! CGEDMDQ computes the Dynamic Mode Decomposition (DMD) for
|
||
|
! a pair of data snapshot matrices, using a QR factorization
|
||
|
! based compression of the data. For the input matrices
|
||
|
! X and Y such that Y = A*X with an unaccessible matrix
|
||
|
! A, CGEDMDQ computes a certain number of Ritz pairs of A using
|
||
|
! the standard Rayleigh-Ritz extraction from a subspace of
|
||
|
! range(X) that is determined using the leading left singular
|
||
|
! vectors of X. Optionally, CGEDMDQ returns the residuals
|
||
|
! of the computed Ritz pairs, the information needed for
|
||
|
! a refinement of the Ritz vectors, or the eigenvectors of
|
||
|
! the Exact DMD.
|
||
|
! For further details see the references listed
|
||
|
! below. For more details of the implementation see [3].
|
||
|
!
|
||
|
! References
|
||
|
! ==========
|
||
|
! [1] P. Schmid: Dynamic mode decomposition of numerical
|
||
|
! and experimental data,
|
||
|
! Journal of Fluid Mechanics 656, 5-28, 2010.
|
||
|
! [2] Z. Drmac, I. Mezic, R. Mohr: Data driven modal
|
||
|
! decompositions: analysis and enhancements,
|
||
|
! SIAM J. on Sci. Comp. 40 (4), A2253-A2285, 2018.
|
||
|
! [3] Z. Drmac: A LAPACK implementation of the Dynamic
|
||
|
! Mode Decomposition I. Technical report. AIMDyn Inc.
|
||
|
! and LAPACK Working Note 298.
|
||
|
! [4] J. Tu, C. W. Rowley, D. M. Luchtenburg, S. L.
|
||
|
! Brunton, N. Kutz: On Dynamic Mode Decomposition:
|
||
|
! Theory and Applications, Journal of Computational
|
||
|
! Dynamics 1(2), 391 -421, 2014.
|
||
|
!
|
||
|
! Developed and supported by:
|
||
|
! ===========================
|
||
|
! Developed and coded by Zlatko Drmac, Faculty of Science,
|
||
|
! University of Zagreb; drmac@math.hr
|
||
|
! In cooperation with
|
||
|
! AIMdyn Inc., Santa Barbara, CA.
|
||
|
! and supported by
|
||
|
! - DARPA SBIR project "Koopman Operator-Based Forecasting
|
||
|
! for Nonstationary Processes from Near-Term, Limited
|
||
|
! Observational Data" Contract No: W31P4Q-21-C-0007
|
||
|
! - DARPA PAI project "Physics-Informed Machine Learning
|
||
|
! Methodologies" Contract No: HR0011-18-9-0033
|
||
|
! - DARPA MoDyL project "A Data-Driven, Operator-Theoretic
|
||
|
! Framework for Space-Time Analysis of Process Dynamics"
|
||
|
! Contract No: HR0011-16-C-0116
|
||
|
! Any opinions, findings and conclusions or recommendations
|
||
|
! expressed in this material are those of the author and
|
||
|
! do not necessarily reflect the views of the DARPA SBIR
|
||
|
! Program Office.
|
||
|
!============================================================
|
||
|
! Distribution Statement A:
|
||
|
! Approved for Public Release, Distribution Unlimited.
|
||
|
! Cleared by DARPA on September 29, 2022
|
||
|
!============================================================
|
||
|
!......................................................................
|
||
|
! Arguments
|
||
|
! =========
|
||
|
! JOBS (input) CHARACTER*1
|
||
|
! Determines whether the initial data snapshots are scaled
|
||
|
! by a diagonal matrix. The data snapshots are the columns
|
||
|
! of F. The leading N-1 columns of F are denoted X and the
|
||
|
! trailing N-1 columns are denoted Y.
|
||
|
! 'S' :: The data snapshots matrices X and Y are multiplied
|
||
|
! with a diagonal matrix D so that X*D has unit
|
||
|
! nonzero columns (in the Euclidean 2-norm)
|
||
|
! 'C' :: The snapshots are scaled as with the 'S' option.
|
||
|
! If it is found that an i-th column of X is zero
|
||
|
! vector and the corresponding i-th column of Y is
|
||
|
! non-zero, then the i-th column of Y is set to
|
||
|
! zero and a warning flag is raised.
|
||
|
! 'Y' :: The data snapshots matrices X and Y are multiplied
|
||
|
! by a diagonal matrix D so that Y*D has unit
|
||
|
! nonzero columns (in the Euclidean 2-norm)
|
||
|
! 'N' :: No data scaling.
|
||
|
!.....
|
||
|
! JOBZ (input) CHARACTER*1
|
||
|
! Determines whether the eigenvectors (Koopman modes) will
|
||
|
! be computed.
|
||
|
! 'V' :: The eigenvectors (Koopman modes) will be computed
|
||
|
! and returned in the matrix Z.
|
||
|
! See the description of Z.
|
||
|
! 'F' :: The eigenvectors (Koopman modes) will be returned
|
||
|
! in factored form as the product Z*V, where Z
|
||
|
! is orthonormal and V contains the eigenvectors
|
||
|
! of the corresponding Rayleigh quotient.
|
||
|
! See the descriptions of F, V, Z.
|
||
|
! 'Q' :: The eigenvectors (Koopman modes) will be returned
|
||
|
! in factored form as the product Q*Z, where Z
|
||
|
! contains the eigenvectors of the compression of the
|
||
|
! underlying discretised operator onto the span of
|
||
|
! the data snapshots. See the descriptions of F, V, Z.
|
||
|
! Q is from the inital QR facorization.
|
||
|
! 'N' :: The eigenvectors are not computed.
|
||
|
!.....
|
||
|
! JOBR (input) CHARACTER*1
|
||
|
! Determines whether to compute the residuals.
|
||
|
! 'R' :: The residuals for the computed eigenpairs will
|
||
|
! be computed and stored in the array RES.
|
||
|
! See the description of RES.
|
||
|
! For this option to be legal, JOBZ must be 'V'.
|
||
|
! 'N' :: The residuals are not computed.
|
||
|
!.....
|
||
|
! JOBQ (input) CHARACTER*1
|
||
|
! Specifies whether to explicitly compute and return the
|
||
|
! unitary matrix from the QR factorization.
|
||
|
! 'Q' :: The matrix Q of the QR factorization of the data
|
||
|
! snapshot matrix is computed and stored in the
|
||
|
! array F. See the description of F.
|
||
|
! 'N' :: The matrix Q is not explicitly computed.
|
||
|
!.....
|
||
|
! JOBT (input) CHARACTER*1
|
||
|
! Specifies whether to return the upper triangular factor
|
||
|
! from the QR factorization.
|
||
|
! 'R' :: The matrix R of the QR factorization of the data
|
||
|
! snapshot matrix F is returned in the array Y.
|
||
|
! See the description of Y and Further details.
|
||
|
! 'N' :: The matrix R is not returned.
|
||
|
!.....
|
||
|
! JOBF (input) CHARACTER*1
|
||
|
! Specifies whether to store information needed for post-
|
||
|
! processing (e.g. computing refined Ritz vectors)
|
||
|
! 'R' :: The matrix needed for the refinement of the Ritz
|
||
|
! vectors is computed and stored in the array B.
|
||
|
! See the description of B.
|
||
|
! 'E' :: The unscaled eigenvectors of the Exact DMD are
|
||
|
! computed and returned in the array B. See the
|
||
|
! description of B.
|
||
|
! 'N' :: No eigenvector refinement data is computed.
|
||
|
! To be useful on exit, this option needs JOBQ='Q'.
|
||
|
!.....
|
||
|
! WHTSVD (input) INTEGER, WHSTVD in { 1, 2, 3, 4 }
|
||
|
! Allows for a selection of the SVD algorithm from the
|
||
|
! LAPACK library.
|
||
|
! 1 :: CGESVD (the QR SVD algorithm)
|
||
|
! 2 :: CGESDD (the Divide and Conquer algorithm; if enough
|
||
|
! workspace available, this is the fastest option)
|
||
|
! 3 :: CGESVDQ (the preconditioned QR SVD ; this and 4
|
||
|
! are the most accurate options)
|
||
|
! 4 :: CGEJSV (the preconditioned Jacobi SVD; this and 3
|
||
|
! are the most accurate options)
|
||
|
! For the four methods above, a significant difference in
|
||
|
! the accuracy of small singular values is possible if
|
||
|
! the snapshots vary in norm so that X is severely
|
||
|
! ill-conditioned. If small (smaller than EPS*||X||)
|
||
|
! singular values are of interest and JOBS=='N', then
|
||
|
! the options (3, 4) give the most accurate results, where
|
||
|
! the option 4 is slightly better and with stronger
|
||
|
! theoretical background.
|
||
|
! If JOBS=='S', i.e. the columns of X will be normalized,
|
||
|
! then all methods give nearly equally accurate results.
|
||
|
!.....
|
||
|
! M (input) INTEGER, M >= 0
|
||
|
! The state space dimension (the number of rows of F).
|
||
|
!.....
|
||
|
! N (input) INTEGER, 0 <= N <= M
|
||
|
! The number of data snapshots from a single trajectory,
|
||
|
! taken at equidistant discrete times. This is the
|
||
|
! number of columns of F.
|
||
|
!.....
|
||
|
! F (input/output) COMPLEX(KIND=WP) M-by-N array
|
||
|
! > On entry,
|
||
|
! the columns of F are the sequence of data snapshots
|
||
|
! from a single trajectory, taken at equidistant discrete
|
||
|
! times. It is assumed that the column norms of F are
|
||
|
! in the range of the normalized floating point numbers.
|
||
|
! < On exit,
|
||
|
! If JOBQ == 'Q', the array F contains the orthogonal
|
||
|
! matrix/factor of the QR factorization of the initial
|
||
|
! data snapshots matrix F. See the description of JOBQ.
|
||
|
! If JOBQ == 'N', the entries in F strictly below the main
|
||
|
! diagonal contain, column-wise, the information on the
|
||
|
! Householder vectors, as returned by CGEQRF. The
|
||
|
! remaining information to restore the orthogonal matrix
|
||
|
! of the initial QR factorization is stored in ZWORK(1:MIN(M,N)).
|
||
|
! See the description of ZWORK.
|
||
|
!.....
|
||
|
! LDF (input) INTEGER, LDF >= M
|
||
|
! The leading dimension of the array F.
|
||
|
!.....
|
||
|
! X (workspace/output) COMPLEX(KIND=WP) MIN(M,N)-by-(N-1) array
|
||
|
! X is used as workspace to hold representations of the
|
||
|
! leading N-1 snapshots in the orthonormal basis computed
|
||
|
! in the QR factorization of F.
|
||
|
! On exit, the leading K columns of X contain the leading
|
||
|
! K left singular vectors of the above described content
|
||
|
! of X. To lift them to the space of the left singular
|
||
|
! vectors U(:,1:K) of the input data, pre-multiply with the
|
||
|
! Q factor from the initial QR factorization.
|
||
|
! See the descriptions of F, K, V and Z.
|
||
|
!.....
|
||
|
! LDX (input) INTEGER, LDX >= N
|
||
|
! The leading dimension of the array X.
|
||
|
!.....
|
||
|
! Y (workspace/output) COMPLEX(KIND=WP) MIN(M,N)-by-(N) array
|
||
|
! Y is used as workspace to hold representations of the
|
||
|
! trailing N-1 snapshots in the orthonormal basis computed
|
||
|
! in the QR factorization of F.
|
||
|
! On exit,
|
||
|
! If JOBT == 'R', Y contains the MIN(M,N)-by-N upper
|
||
|
! triangular factor from the QR factorization of the data
|
||
|
! snapshot matrix F.
|
||
|
!.....
|
||
|
! LDY (input) INTEGER , LDY >= N
|
||
|
! The leading dimension of the array Y.
|
||
|
!.....
|
||
|
! NRNK (input) INTEGER
|
||
|
! Determines the mode how to compute the numerical rank,
|
||
|
! i.e. how to truncate small singular values of the input
|
||
|
! matrix X. On input, if
|
||
|
! NRNK = -1 :: i-th singular value sigma(i) is truncated
|
||
|
! if sigma(i) <= TOL*sigma(1)
|
||
|
! This option is recommended.
|
||
|
! NRNK = -2 :: i-th singular value sigma(i) is truncated
|
||
|
! if sigma(i) <= TOL*sigma(i-1)
|
||
|
! This option is included for R&D purposes.
|
||
|
! It requires highly accurate SVD, which
|
||
|
! may not be feasible.
|
||
|
! The numerical rank can be enforced by using positive
|
||
|
! value of NRNK as follows:
|
||
|
! 0 < NRNK <= N-1 :: at most NRNK largest singular values
|
||
|
! will be used. If the number of the computed nonzero
|
||
|
! singular values is less than NRNK, then only those
|
||
|
! nonzero values will be used and the actually used
|
||
|
! dimension is less than NRNK. The actual number of
|
||
|
! the nonzero singular values is returned in the variable
|
||
|
! K. See the description of K.
|
||
|
!.....
|
||
|
! TOL (input) REAL(KIND=WP), 0 <= TOL < 1
|
||
|
! The tolerance for truncating small singular values.
|
||
|
! See the description of NRNK.
|
||
|
!.....
|
||
|
! K (output) INTEGER, 0 <= K <= N
|
||
|
! The dimension of the SVD/POD basis for the leading N-1
|
||
|
! data snapshots (columns of F) and the number of the
|
||
|
! computed Ritz pairs. The value of K is determined
|
||
|
! according to the rule set by the parameters NRNK and
|
||
|
! TOL. See the descriptions of NRNK and TOL.
|
||
|
!.....
|
||
|
! EIGS (output) COMPLEX(KIND=WP) (N-1)-by-1 array
|
||
|
! The leading K (K<=N-1) entries of EIGS contain
|
||
|
! the computed eigenvalues (Ritz values).
|
||
|
! See the descriptions of K, and Z.
|
||
|
!.....
|
||
|
! Z (workspace/output) COMPLEX(KIND=WP) M-by-(N-1) array
|
||
|
! If JOBZ =='V' then Z contains the Ritz vectors. Z(:,i)
|
||
|
! is an eigenvector of the i-th Ritz value; ||Z(:,i)||_2=1.
|
||
|
! If JOBZ == 'F', then the Z(:,i)'s are given implicitly as
|
||
|
! Z*V, where Z contains orthonormal matrix (the product of
|
||
|
! Q from the initial QR factorization and the SVD/POD_basis
|
||
|
! returned by CGEDMD in X) and the second factor (the
|
||
|
! eigenvectors of the Rayleigh quotient) is in the array V,
|
||
|
! as returned by CGEDMD. That is, X(:,1:K)*V(:,i)
|
||
|
! is an eigenvector corresponding to EIGS(i). The columns
|
||
|
! of V(1:K,1:K) are the computed eigenvectors of the
|
||
|
! K-by-K Rayleigh quotient.
|
||
|
! See the descriptions of EIGS, X and V.
|
||
|
!.....
|
||
|
! LDZ (input) INTEGER , LDZ >= M
|
||
|
! The leading dimension of the array Z.
|
||
|
!.....
|
||
|
! RES (output) REAL(KIND=WP) (N-1)-by-1 array
|
||
|
! RES(1:K) contains the residuals for the K computed
|
||
|
! Ritz pairs,
|
||
|
! RES(i) = || A * Z(:,i) - EIGS(i)*Z(:,i))||_2.
|
||
|
! See the description of EIGS and Z.
|
||
|
!.....
|
||
|
! B (output) COMPLEX(KIND=WP) MIN(M,N)-by-(N-1) array.
|
||
|
! IF JOBF =='R', B(1:N,1:K) contains A*U(:,1:K), and can
|
||
|
! be used for computing the refined vectors; see further
|
||
|
! details in the provided references.
|
||
|
! If JOBF == 'E', B(1:N,1;K) contains
|
||
|
! A*U(:,1:K)*W(1:K,1:K), which are the vectors from the
|
||
|
! Exact DMD, up to scaling by the inverse eigenvalues.
|
||
|
! In both cases, the content of B can be lifted to the
|
||
|
! original dimension of the input data by pre-multiplying
|
||
|
! with the Q factor from the initial QR factorization.
|
||
|
! Here A denotes a compression of the underlying operator.
|
||
|
! See the descriptions of F and X.
|
||
|
! If JOBF =='N', then B is not referenced.
|
||
|
!.....
|
||
|
! LDB (input) INTEGER, LDB >= MIN(M,N)
|
||
|
! The leading dimension of the array B.
|
||
|
!.....
|
||
|
! V (workspace/output) COMPLEX(KIND=WP) (N-1)-by-(N-1) array
|
||
|
! On exit, V(1:K,1:K) V contains the K eigenvectors of
|
||
|
! the Rayleigh quotient. The Ritz vectors
|
||
|
! (returned in Z) are the product of Q from the initial QR
|
||
|
! factorization (see the description of F) X (see the
|
||
|
! description of X) and V.
|
||
|
!.....
|
||
|
! LDV (input) INTEGER, LDV >= N-1
|
||
|
! The leading dimension of the array V.
|
||
|
!.....
|
||
|
! S (output) COMPLEX(KIND=WP) (N-1)-by-(N-1) array
|
||
|
! The array S(1:K,1:K) is used for the matrix Rayleigh
|
||
|
! quotient. This content is overwritten during
|
||
|
! the eigenvalue decomposition by CGEEV.
|
||
|
! See the description of K.
|
||
|
!.....
|
||
|
! LDS (input) INTEGER, LDS >= N-1
|
||
|
! The leading dimension of the array S.
|
||
|
!.....
|
||
|
! ZWORK (workspace/output) COMPLEX(KIND=WP) LWORK-by-1 array
|
||
|
! On exit,
|
||
|
! ZWORK(1:MIN(M,N)) contains the scalar factors of the
|
||
|
! elementary reflectors as returned by CGEQRF of the
|
||
|
! M-by-N input matrix F.
|
||
|
! If the call to CGEDMDQ is only workspace query, then
|
||
|
! ZWORK(1) contains the minimal complex workspace length and
|
||
|
! ZWORK(2) is the optimal complex workspace length.
|
||
|
! Hence, the length of work is at least 2.
|
||
|
! See the description of LZWORK.
|
||
|
!.....
|
||
|
! LZWORK (input) INTEGER
|
||
|
! The minimal length of the workspace vector ZWORK.
|
||
|
! LZWORK is calculated as follows:
|
||
|
! Let MLWQR = N (minimal workspace for CGEQRF[M,N])
|
||
|
! MLWDMD = minimal workspace for CGEDMD (see the
|
||
|
! description of LWORK in CGEDMD)
|
||
|
! MLWMQR = N (minimal workspace for
|
||
|
! ZUNMQR['L','N',M,N,N])
|
||
|
! MLWGQR = N (minimal workspace for ZUNGQR[M,N,N])
|
||
|
! MINMN = MIN(M,N)
|
||
|
! Then
|
||
|
! LZWORK = MAX(2, MIN(M,N)+MLWQR, MINMN+MLWDMD)
|
||
|
! is further updated as follows:
|
||
|
! if JOBZ == 'V' or JOBZ == 'F' THEN
|
||
|
! LZWORK = MAX( LZWORK, MINMN+MLWMQR )
|
||
|
! if JOBQ == 'Q' THEN
|
||
|
! LZWORK = MAX( ZLWORK, MINMN+MLWGQR)
|
||
|
!
|
||
|
!.....
|
||
|
! WORK (workspace/output) REAL(KIND=WP) LWORK-by-1 array
|
||
|
! On exit,
|
||
|
! WORK(1:N-1) contains the singular values of
|
||
|
! the input submatrix F(1:M,1:N-1).
|
||
|
! If the call to CGEDMDQ is only workspace query, then
|
||
|
! WORK(1) contains the minimal workspace length and
|
||
|
! WORK(2) is the optimal workspace length. hence, the
|
||
|
! length of work is at least 2.
|
||
|
! See the description of LWORK.
|
||
|
!.....
|
||
|
! LWORK (input) INTEGER
|
||
|
! The minimal length of the workspace vector WORK.
|
||
|
! LWORK is the same as in CGEDMD, because in CGEDMDQ
|
||
|
! only CGEDMD requires real workspace for snapshots
|
||
|
! of dimensions MIN(M,N)-by-(N-1).
|
||
|
! If on entry LWORK = -1, then a workspace query is
|
||
|
! assumed and the procedure only computes the minimal
|
||
|
! and the optimal workspace lengths for both WORK and
|
||
|
! IWORK. See the descriptions of WORK and IWORK.
|
||
|
!.....
|
||
|
! IWORK (workspace/output) INTEGER LIWORK-by-1 array
|
||
|
! Workspace that is required only if WHTSVD equals
|
||
|
! 2 , 3 or 4. (See the description of WHTSVD).
|
||
|
! If on entry LWORK =-1 or LIWORK=-1, then the
|
||
|
! minimal length of IWORK is computed and returned in
|
||
|
! IWORK(1). See the description of LIWORK.
|
||
|
!.....
|
||
|
! LIWORK (input) INTEGER
|
||
|
! The minimal length of the workspace vector IWORK.
|
||
|
! If WHTSVD == 1, then only IWORK(1) is used; LIWORK >=1
|
||
|
! Let M1=MIN(M,N), N1=N-1. Then
|
||
|
! If WHTSVD == 2, then LIWORK >= MAX(1,8*MIN(M,N))
|
||
|
! If WHTSVD == 3, then LIWORK >= MAX(1,M+N-1)
|
||
|
! If WHTSVD == 4, then LIWORK >= MAX(3,M+3*N)
|
||
|
! If on entry LIWORK = -1, then a workspace query is
|
||
|
! assumed and the procedure only computes the minimal
|
||
|
! and the optimal workspace lengths for both WORK and
|
||
|
! IWORK. See the descriptions of WORK and IWORK.
|
||
|
!.....
|
||
|
! INFO (output) INTEGER
|
||
|
! -i < 0 :: On entry, the i-th argument had an
|
||
|
! illegal value
|
||
|
! = 0 :: Successful return.
|
||
|
! = 1 :: Void input. Quick exit (M=0 or N=0).
|
||
|
! = 2 :: The SVD computation of X did not converge.
|
||
|
! Suggestion: Check the input data and/or
|
||
|
! repeat with different WHTSVD.
|
||
|
! = 3 :: The computation of the eigenvalues did not
|
||
|
! converge.
|
||
|
! = 4 :: If data scaling was requested on input and
|
||
|
! the procedure found inconsistency in the data
|
||
|
! such that for some column index i,
|
||
|
! X(:,i) = 0 but Y(:,i) /= 0, then Y(:,i) is set
|
||
|
! to zero if JOBS=='C'. The computation proceeds
|
||
|
! with original or modified data and warning
|
||
|
! flag is set with INFO=4.
|
||
|
!.............................................................
|
||
|
!.............................................................
|
||
|
! Parameters
|
||
|
! ~~~~~~~~~~
|
||
|
REAL(KIND=WP), PARAMETER :: ONE = 1.0_WP
|
||
|
REAL(KIND=WP), PARAMETER :: ZERO = 0.0_WP
|
||
|
! COMPLEX(KIND=WP), PARAMETER :: ZONE = ( 1.0_WP, 0.0_WP )
|
||
|
COMPLEX(KIND=WP), PARAMETER :: ZZERO = ( 0.0_WP, 0.0_WP )
|
||
|
!
|
||
|
! Local scalars
|
||
|
! ~~~~~~~~~~~~~
|
||
|
INTEGER :: IMINWR, INFO1, MINMN, MLRWRK, &
|
||
|
MLWDMD, MLWGQR, MLWMQR, MLWORK, &
|
||
|
MLWQR, OLWDMD, OLWGQR, OLWMQR, &
|
||
|
OLWORK, OLWQR
|
||
|
LOGICAL :: LQUERY, SCCOLX, SCCOLY, WANTQ, &
|
||
|
WNTTRF, WNTRES, WNTVEC, WNTVCF, &
|
||
|
WNTVCQ, WNTREF, WNTEX
|
||
|
CHARACTER(LEN=1) :: JOBVL
|
||
|
!
|
||
|
! External functions (BLAS and LAPACK)
|
||
|
! ~~~~~~~~~~~~~~~~~
|
||
|
LOGICAL LSAME
|
||
|
EXTERNAL LSAME
|
||
|
!
|
||
|
! External subroutines (BLAS and LAPACK)
|
||
|
! ~~~~~~~~~~~~~~~~~~~~
|
||
|
EXTERNAL CGEQRF, CLACPY, CLASET, CUNGQR, &
|
||
|
CUNMQR, XERBLA
|
||
|
|
||
|
! External subroutines
|
||
|
! ~~~~~~~~~~~~~~~~~~~~
|
||
|
EXTERNAL CGEDMD
|
||
|
|
||
|
! Intrinsic functions
|
||
|
! ~~~~~~~~~~~~~~~~~~~
|
||
|
INTRINSIC MAX, MIN, INT
|
||
|
!..........................................................
|
||
|
!
|
||
|
! Test the input arguments
|
||
|
WNTRES = LSAME(JOBR,'R')
|
||
|
SCCOLX = LSAME(JOBS,'S') .OR. LSAME( JOBS, 'C' )
|
||
|
SCCOLY = LSAME(JOBS,'Y')
|
||
|
WNTVEC = LSAME(JOBZ,'V')
|
||
|
WNTVCF = LSAME(JOBZ,'F')
|
||
|
WNTVCQ = LSAME(JOBZ,'Q')
|
||
|
WNTREF = LSAME(JOBF,'R')
|
||
|
WNTEX = LSAME(JOBF,'E')
|
||
|
WANTQ = LSAME(JOBQ,'Q')
|
||
|
WNTTRF = LSAME(JOBT,'R')
|
||
|
MINMN = MIN(M,N)
|
||
|
INFO = 0
|
||
|
LQUERY = ( ( LWORK == -1 ) .OR. ( LIWORK == -1 ) )
|
||
|
!
|
||
|
IF ( .NOT. (SCCOLX .OR. SCCOLY .OR. &
|
||
|
LSAME(JOBS,'N')) ) THEN
|
||
|
INFO = -1
|
||
|
ELSE IF ( .NOT. (WNTVEC .OR. WNTVCF .OR. WNTVCQ &
|
||
|
.OR. LSAME(JOBZ,'N')) ) THEN
|
||
|
INFO = -2
|
||
|
ELSE IF ( .NOT. (WNTRES .OR. LSAME(JOBR,'N')) .OR. &
|
||
|
( WNTRES .AND. LSAME(JOBZ,'N') ) ) THEN
|
||
|
INFO = -3
|
||
|
ELSE IF ( .NOT. (WANTQ .OR. LSAME(JOBQ,'N')) ) THEN
|
||
|
INFO = -4
|
||
|
ELSE IF ( .NOT. ( WNTTRF .OR. LSAME(JOBT,'N') ) ) THEN
|
||
|
INFO = -5
|
||
|
ELSE IF ( .NOT. (WNTREF .OR. WNTEX .OR. &
|
||
|
LSAME(JOBF,'N') ) ) THEN
|
||
|
INFO = -6
|
||
|
ELSE IF ( .NOT. ((WHTSVD == 1).OR.(WHTSVD == 2).OR. &
|
||
|
(WHTSVD == 3).OR.(WHTSVD == 4)) ) THEN
|
||
|
INFO = -7
|
||
|
ELSE IF ( M < 0 ) THEN
|
||
|
INFO = -8
|
||
|
ELSE IF ( ( N < 0 ) .OR. ( N > M+1 ) ) THEN
|
||
|
INFO = -9
|
||
|
ELSE IF ( LDF < M ) THEN
|
||
|
INFO = -11
|
||
|
ELSE IF ( LDX < MINMN ) THEN
|
||
|
INFO = -13
|
||
|
ELSE IF ( LDY < MINMN ) THEN
|
||
|
INFO = -15
|
||
|
ELSE IF ( .NOT. (( NRNK == -2).OR.(NRNK == -1).OR. &
|
||
|
((NRNK >= 1).AND.(NRNK <=N ))) ) THEN
|
||
|
INFO = -16
|
||
|
ELSE IF ( ( TOL < ZERO ) .OR. ( TOL >= ONE ) ) THEN
|
||
|
INFO = -17
|
||
|
ELSE IF ( LDZ < M ) THEN
|
||
|
INFO = -21
|
||
|
ELSE IF ( (WNTREF.OR.WNTEX ).AND.( LDB < MINMN ) ) THEN
|
||
|
INFO = -24
|
||
|
ELSE IF ( LDV < N-1 ) THEN
|
||
|
INFO = -26
|
||
|
ELSE IF ( LDS < N-1 ) THEN
|
||
|
INFO = -28
|
||
|
END IF
|
||
|
!
|
||
|
IF ( WNTVEC .OR. WNTVCF .OR. WNTVCQ ) THEN
|
||
|
JOBVL = 'V'
|
||
|
ELSE
|
||
|
JOBVL = 'N'
|
||
|
END IF
|
||
|
IF ( INFO == 0 ) THEN
|
||
|
! Compute the minimal and the optimal workspace
|
||
|
! requirements. Simulate running the code and
|
||
|
! determine minimal and optimal sizes of the
|
||
|
! workspace at any moment of the run.
|
||
|
IF ( ( N == 0 ) .OR. ( N == 1 ) ) THEN
|
||
|
! All output except K is void. INFO=1 signals
|
||
|
! the void input. In case of a workspace query,
|
||
|
! the minimal workspace lengths are returned.
|
||
|
IF ( LQUERY ) THEN
|
||
|
IWORK(1) = 1
|
||
|
WORK(1) = 2
|
||
|
WORK(2) = 2
|
||
|
ELSE
|
||
|
K = 0
|
||
|
END IF
|
||
|
INFO = 1
|
||
|
RETURN
|
||
|
END IF
|
||
|
|
||
|
MLRWRK = 2
|
||
|
MLWORK = 2
|
||
|
OLWORK = 2
|
||
|
IMINWR = 1
|
||
|
MLWQR = MAX(1,N) ! Minimal workspace length for CGEQRF.
|
||
|
MLWORK = MAX(MLWORK,MINMN + MLWQR)
|
||
|
|
||
|
IF ( LQUERY ) THEN
|
||
|
CALL CGEQRF( M, N, F, LDF, ZWORK, ZWORK, -1, &
|
||
|
INFO1 )
|
||
|
OLWQR = INT(ZWORK(1))
|
||
|
OLWORK = MAX(OLWORK,MINMN + OLWQR)
|
||
|
END IF
|
||
|
CALL CGEDMD( JOBS, JOBVL, JOBR, JOBF, WHTSVD, MINMN,&
|
||
|
N-1, X, LDX, Y, LDY, NRNK, TOL, K, &
|
||
|
EIGS, Z, LDZ, RES, B, LDB, V, LDV, &
|
||
|
S, LDS, ZWORK, LZWORK, WORK, -1, IWORK,&
|
||
|
LIWORK, INFO1 )
|
||
|
MLWDMD = INT(ZWORK(1))
|
||
|
MLWORK = MAX(MLWORK, MINMN + MLWDMD)
|
||
|
MLRWRK = MAX(MLRWRK, INT(WORK(1)))
|
||
|
IMINWR = MAX(IMINWR, IWORK(1))
|
||
|
IF ( LQUERY ) THEN
|
||
|
OLWDMD = INT(ZWORK(2))
|
||
|
OLWORK = MAX(OLWORK, MINMN+OLWDMD)
|
||
|
END IF
|
||
|
IF ( WNTVEC .OR. WNTVCF ) THEN
|
||
|
MLWMQR = MAX(1,N)
|
||
|
MLWORK = MAX(MLWORK, MINMN+MLWMQR)
|
||
|
IF ( LQUERY ) THEN
|
||
|
CALL CUNMQR( 'L','N', M, N, MINMN, F, LDF, &
|
||
|
ZWORK, Z, LDZ, ZWORK, -1, INFO1 )
|
||
|
OLWMQR = INT(ZWORK(1))
|
||
|
OLWORK = MAX(OLWORK, MINMN+OLWMQR)
|
||
|
END IF
|
||
|
END IF
|
||
|
IF ( WANTQ ) THEN
|
||
|
MLWGQR = MAX(1,N)
|
||
|
MLWORK = MAX(MLWORK, MINMN+MLWGQR)
|
||
|
IF ( LQUERY ) THEN
|
||
|
CALL CUNGQR( M, MINMN, MINMN, F, LDF, ZWORK, &
|
||
|
ZWORK, -1, INFO1 )
|
||
|
OLWGQR = INT(ZWORK(1))
|
||
|
OLWORK = MAX(OLWORK, MINMN+OLWGQR)
|
||
|
END IF
|
||
|
END IF
|
||
|
IF ( LIWORK < IMINWR .AND. (.NOT.LQUERY) ) INFO = -34
|
||
|
IF ( LWORK < MLRWRK .AND. (.NOT.LQUERY) ) INFO = -32
|
||
|
IF ( LZWORK < MLWORK .AND. (.NOT.LQUERY) ) INFO = -30
|
||
|
END IF
|
||
|
IF( INFO /= 0 ) THEN
|
||
|
CALL XERBLA( 'CGEDMDQ', -INFO )
|
||
|
RETURN
|
||
|
ELSE IF ( LQUERY ) THEN
|
||
|
! Return minimal and optimal workspace sizes
|
||
|
IWORK(1) = IMINWR
|
||
|
ZWORK(1) = MLWORK
|
||
|
ZWORK(2) = OLWORK
|
||
|
WORK(1) = MLRWRK
|
||
|
WORK(2) = MLRWRK
|
||
|
RETURN
|
||
|
END IF
|
||
|
!.....
|
||
|
! Initial QR factorization that is used to represent the
|
||
|
! snapshots as elements of lower dimensional subspace.
|
||
|
! For large scale computation with M >>N , at this place
|
||
|
! one can use an out of core QRF.
|
||
|
!
|
||
|
CALL CGEQRF( M, N, F, LDF, ZWORK, &
|
||
|
ZWORK(MINMN+1), LZWORK-MINMN, INFO1 )
|
||
|
!
|
||
|
! Define X and Y as the snapshots representations in the
|
||
|
! orthogonal basis computed in the QR factorization.
|
||
|
! X corresponds to the leading N-1 and Y to the trailing
|
||
|
! N-1 snapshots.
|
||
|
CALL CLASET( 'L', MINMN, N-1, ZZERO, ZZERO, X, LDX )
|
||
|
CALL CLACPY( 'U', MINMN, N-1, F, LDF, X, LDX )
|
||
|
CALL CLACPY( 'A', MINMN, N-1, F(1,2), LDF, Y, LDY )
|
||
|
IF ( M >= 3 ) THEN
|
||
|
CALL CLASET( 'L', MINMN-2, N-2, ZZERO, ZZERO, &
|
||
|
Y(3,1), LDY )
|
||
|
END IF
|
||
|
!
|
||
|
! Compute the DMD of the projected snapshot pairs (X,Y)
|
||
|
CALL CGEDMD( JOBS, JOBVL, JOBR, JOBF, WHTSVD, MINMN, &
|
||
|
N-1, X, LDX, Y, LDY, NRNK, TOL, K, &
|
||
|
EIGS, Z, LDZ, RES, B, LDB, V, LDV, &
|
||
|
S, LDS, ZWORK(MINMN+1), LZWORK-MINMN, &
|
||
|
WORK, LWORK, IWORK, LIWORK, INFO1 )
|
||
|
IF ( INFO1 == 2 .OR. INFO1 == 3 ) THEN
|
||
|
! Return with error code. See CGEDMD for details.
|
||
|
INFO = INFO1
|
||
|
RETURN
|
||
|
ELSE
|
||
|
INFO = INFO1
|
||
|
END IF
|
||
|
!
|
||
|
! The Ritz vectors (Koopman modes) can be explicitly
|
||
|
! formed or returned in factored form.
|
||
|
IF ( WNTVEC ) THEN
|
||
|
! Compute the eigenvectors explicitly.
|
||
|
IF ( M > MINMN ) CALL CLASET( 'A', M-MINMN, K, ZZERO, &
|
||
|
ZZERO, Z(MINMN+1,1), LDZ )
|
||
|
CALL CUNMQR( 'L','N', M, K, MINMN, F, LDF, ZWORK, Z, &
|
||
|
LDZ, ZWORK(MINMN+1), LZWORK-MINMN, INFO1 )
|
||
|
ELSE IF ( WNTVCF ) THEN
|
||
|
! Return the Ritz vectors (eigenvectors) in factored
|
||
|
! form Z*V, where Z contains orthonormal matrix (the
|
||
|
! product of Q from the initial QR factorization and
|
||
|
! the SVD/POD_basis returned by CGEDMD in X) and the
|
||
|
! second factor (the eigenvectors of the Rayleigh
|
||
|
! quotient) is in the array V, as returned by CGEDMD.
|
||
|
CALL CLACPY( 'A', N, K, X, LDX, Z, LDZ )
|
||
|
IF ( M > N ) CALL CLASET( 'A', M-N, K, ZZERO, ZZERO, &
|
||
|
Z(N+1,1), LDZ )
|
||
|
CALL CUNMQR( 'L','N', M, K, MINMN, F, LDF, ZWORK, Z, &
|
||
|
LDZ, ZWORK(MINMN+1), LZWORK-MINMN, INFO1 )
|
||
|
END IF
|
||
|
!
|
||
|
! Some optional output variables:
|
||
|
!
|
||
|
! The upper triangular factor R in the initial QR
|
||
|
! factorization is optionally returned in the array Y.
|
||
|
! This is useful if this call to CGEDMDQ is to be
|
||
|
|
||
|
! followed by a streaming DMD that is implemented in a
|
||
|
! QR compressed form.
|
||
|
IF ( WNTTRF ) THEN ! Return the upper triangular R in Y
|
||
|
CALL CLASET( 'A', MINMN, N, ZZERO, ZZERO, Y, LDY )
|
||
|
CALL CLACPY( 'U', MINMN, N, F, LDF, Y, LDY )
|
||
|
END IF
|
||
|
!
|
||
|
! The orthonormal/unitary factor Q in the initial QR
|
||
|
! factorization is optionally returned in the array F.
|
||
|
! Same as with the triangular factor above, this is
|
||
|
! useful in a streaming DMD.
|
||
|
IF ( WANTQ ) THEN ! Q overwrites F
|
||
|
CALL CUNGQR( M, MINMN, MINMN, F, LDF, ZWORK, &
|
||
|
ZWORK(MINMN+1), LZWORK-MINMN, INFO1 )
|
||
|
END IF
|
||
|
!
|
||
|
RETURN
|
||
|
!
|
||
|
END SUBROUTINE CGEDMDQ
|
||
|
|