You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
223 lines
6.1 KiB
223 lines
6.1 KiB
2 years ago
|
*> \brief \b CGETRF
|
||
|
*
|
||
|
* =========== DOCUMENTATION ===========
|
||
|
*
|
||
|
* Online html documentation available at
|
||
|
* http://www.netlib.org/lapack/explore-html/
|
||
|
*
|
||
|
*> \htmlonly
|
||
|
*> Download CGETRF + dependencies
|
||
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cgetrf.f">
|
||
|
*> [TGZ]</a>
|
||
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cgetrf.f">
|
||
|
*> [ZIP]</a>
|
||
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cgetrf.f">
|
||
|
*> [TXT]</a>
|
||
|
*> \endhtmlonly
|
||
|
*
|
||
|
* Definition:
|
||
|
* ===========
|
||
|
*
|
||
|
* SUBROUTINE CGETRF( M, N, A, LDA, IPIV, INFO )
|
||
|
*
|
||
|
* .. Scalar Arguments ..
|
||
|
* INTEGER INFO, LDA, M, N
|
||
|
* ..
|
||
|
* .. Array Arguments ..
|
||
|
* INTEGER IPIV( * )
|
||
|
* COMPLEX A( LDA, * )
|
||
|
* ..
|
||
|
*
|
||
|
*
|
||
|
*> \par Purpose:
|
||
|
* =============
|
||
|
*>
|
||
|
*> \verbatim
|
||
|
*>
|
||
|
*> CGETRF computes an LU factorization of a general M-by-N matrix A
|
||
|
*> using partial pivoting with row interchanges.
|
||
|
*>
|
||
|
*> The factorization has the form
|
||
|
*> A = P * L * U
|
||
|
*> where P is a permutation matrix, L is lower triangular with unit
|
||
|
*> diagonal elements (lower trapezoidal if m > n), and U is upper
|
||
|
*> triangular (upper trapezoidal if m < n).
|
||
|
*>
|
||
|
*> This is the right-looking Level 3 BLAS version of the algorithm.
|
||
|
*> \endverbatim
|
||
|
*
|
||
|
* Arguments:
|
||
|
* ==========
|
||
|
*
|
||
|
*> \param[in] M
|
||
|
*> \verbatim
|
||
|
*> M is INTEGER
|
||
|
*> The number of rows of the matrix A. M >= 0.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] N
|
||
|
*> \verbatim
|
||
|
*> N is INTEGER
|
||
|
*> The number of columns of the matrix A. N >= 0.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in,out] A
|
||
|
*> \verbatim
|
||
|
*> A is COMPLEX array, dimension (LDA,N)
|
||
|
*> On entry, the M-by-N matrix to be factored.
|
||
|
*> On exit, the factors L and U from the factorization
|
||
|
*> A = P*L*U; the unit diagonal elements of L are not stored.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] LDA
|
||
|
*> \verbatim
|
||
|
*> LDA is INTEGER
|
||
|
*> The leading dimension of the array A. LDA >= max(1,M).
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] IPIV
|
||
|
*> \verbatim
|
||
|
*> IPIV is INTEGER array, dimension (min(M,N))
|
||
|
*> The pivot indices; for 1 <= i <= min(M,N), row i of the
|
||
|
*> matrix was interchanged with row IPIV(i).
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] INFO
|
||
|
*> \verbatim
|
||
|
*> INFO is INTEGER
|
||
|
*> = 0: successful exit
|
||
|
*> < 0: if INFO = -i, the i-th argument had an illegal value
|
||
|
*> > 0: if INFO = i, U(i,i) is exactly zero. The factorization
|
||
|
*> has been completed, but the factor U is exactly
|
||
|
*> singular, and division by zero will occur if it is used
|
||
|
*> to solve a system of equations.
|
||
|
*> \endverbatim
|
||
|
*
|
||
|
* Authors:
|
||
|
* ========
|
||
|
*
|
||
|
*> \author Univ. of Tennessee
|
||
|
*> \author Univ. of California Berkeley
|
||
|
*> \author Univ. of Colorado Denver
|
||
|
*> \author NAG Ltd.
|
||
|
*
|
||
|
*> \ingroup complexGEcomputational
|
||
|
*
|
||
|
* =====================================================================
|
||
|
SUBROUTINE CGETRF( M, N, A, LDA, IPIV, INFO )
|
||
|
*
|
||
|
* -- LAPACK computational routine --
|
||
|
* -- LAPACK is a software package provided by Univ. of Tennessee, --
|
||
|
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
||
|
*
|
||
|
* .. Scalar Arguments ..
|
||
|
INTEGER INFO, LDA, M, N
|
||
|
* ..
|
||
|
* .. Array Arguments ..
|
||
|
INTEGER IPIV( * )
|
||
|
COMPLEX A( LDA, * )
|
||
|
* ..
|
||
|
*
|
||
|
* =====================================================================
|
||
|
*
|
||
|
* .. Parameters ..
|
||
|
COMPLEX ONE
|
||
|
PARAMETER ( ONE = ( 1.0E+0, 0.0E+0 ) )
|
||
|
* ..
|
||
|
* .. Local Scalars ..
|
||
|
INTEGER I, IINFO, J, JB, NB
|
||
|
* ..
|
||
|
* .. External Subroutines ..
|
||
|
EXTERNAL CGEMM, CGETRF2, CLASWP, CTRSM, XERBLA
|
||
|
* ..
|
||
|
* .. External Functions ..
|
||
|
INTEGER ILAENV
|
||
|
EXTERNAL ILAENV
|
||
|
* ..
|
||
|
* .. Intrinsic Functions ..
|
||
|
INTRINSIC MAX, MIN
|
||
|
* ..
|
||
|
* .. Executable Statements ..
|
||
|
*
|
||
|
* Test the input parameters.
|
||
|
*
|
||
|
INFO = 0
|
||
|
IF( M.LT.0 ) THEN
|
||
|
INFO = -1
|
||
|
ELSE IF( N.LT.0 ) THEN
|
||
|
INFO = -2
|
||
|
ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
|
||
|
INFO = -4
|
||
|
END IF
|
||
|
IF( INFO.NE.0 ) THEN
|
||
|
CALL XERBLA( 'CGETRF', -INFO )
|
||
|
RETURN
|
||
|
END IF
|
||
|
*
|
||
|
* Quick return if possible
|
||
|
*
|
||
|
IF( M.EQ.0 .OR. N.EQ.0 )
|
||
|
$ RETURN
|
||
|
*
|
||
|
* Determine the block size for this environment.
|
||
|
*
|
||
|
NB = ILAENV( 1, 'CGETRF', ' ', M, N, -1, -1 )
|
||
|
IF( NB.LE.1 .OR. NB.GE.MIN( M, N ) ) THEN
|
||
|
*
|
||
|
* Use unblocked code.
|
||
|
*
|
||
|
CALL CGETRF2( M, N, A, LDA, IPIV, INFO )
|
||
|
ELSE
|
||
|
*
|
||
|
* Use blocked code.
|
||
|
*
|
||
|
DO 20 J = 1, MIN( M, N ), NB
|
||
|
JB = MIN( MIN( M, N )-J+1, NB )
|
||
|
*
|
||
|
* Factor diagonal and subdiagonal blocks and test for exact
|
||
|
* singularity.
|
||
|
*
|
||
|
CALL CGETRF2( M-J+1, JB, A( J, J ), LDA, IPIV( J ), IINFO )
|
||
|
*
|
||
|
* Adjust INFO and the pivot indices.
|
||
|
*
|
||
|
IF( INFO.EQ.0 .AND. IINFO.GT.0 )
|
||
|
$ INFO = IINFO + J - 1
|
||
|
DO 10 I = J, MIN( M, J+JB-1 )
|
||
|
IPIV( I ) = J - 1 + IPIV( I )
|
||
|
10 CONTINUE
|
||
|
*
|
||
|
* Apply interchanges to columns 1:J-1.
|
||
|
*
|
||
|
CALL CLASWP( J-1, A, LDA, J, J+JB-1, IPIV, 1 )
|
||
|
*
|
||
|
IF( J+JB.LE.N ) THEN
|
||
|
*
|
||
|
* Apply interchanges to columns J+JB:N.
|
||
|
*
|
||
|
CALL CLASWP( N-J-JB+1, A( 1, J+JB ), LDA, J, J+JB-1,
|
||
|
$ IPIV, 1 )
|
||
|
*
|
||
|
* Compute block row of U.
|
||
|
*
|
||
|
CALL CTRSM( 'Left', 'Lower', 'No transpose', 'Unit', JB,
|
||
|
$ N-J-JB+1, ONE, A( J, J ), LDA, A( J, J+JB ),
|
||
|
$ LDA )
|
||
|
IF( J+JB.LE.M ) THEN
|
||
|
*
|
||
|
* Update trailing submatrix.
|
||
|
*
|
||
|
CALL CGEMM( 'No transpose', 'No transpose', M-J-JB+1,
|
||
|
$ N-J-JB+1, JB, -ONE, A( J+JB, J ), LDA,
|
||
|
$ A( J, J+JB ), LDA, ONE, A( J+JB, J+JB ),
|
||
|
$ LDA )
|
||
|
END IF
|
||
|
END IF
|
||
|
20 CONTINUE
|
||
|
END IF
|
||
|
RETURN
|
||
|
*
|
||
|
* End of CGETRF
|
||
|
*
|
||
|
END
|