You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
242 lines
6.6 KiB
242 lines
6.6 KiB
2 years ago
|
*> \brief <b> CGTSV computes the solution to system of linear equations A * X = B for GT matrices </b>
|
||
|
*
|
||
|
* =========== DOCUMENTATION ===========
|
||
|
*
|
||
|
* Online html documentation available at
|
||
|
* http://www.netlib.org/lapack/explore-html/
|
||
|
*
|
||
|
*> \htmlonly
|
||
|
*> Download CGTSV + dependencies
|
||
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cgtsv.f">
|
||
|
*> [TGZ]</a>
|
||
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cgtsv.f">
|
||
|
*> [ZIP]</a>
|
||
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cgtsv.f">
|
||
|
*> [TXT]</a>
|
||
|
*> \endhtmlonly
|
||
|
*
|
||
|
* Definition:
|
||
|
* ===========
|
||
|
*
|
||
|
* SUBROUTINE CGTSV( N, NRHS, DL, D, DU, B, LDB, INFO )
|
||
|
*
|
||
|
* .. Scalar Arguments ..
|
||
|
* INTEGER INFO, LDB, N, NRHS
|
||
|
* ..
|
||
|
* .. Array Arguments ..
|
||
|
* COMPLEX B( LDB, * ), D( * ), DL( * ), DU( * )
|
||
|
* ..
|
||
|
*
|
||
|
*
|
||
|
*> \par Purpose:
|
||
|
* =============
|
||
|
*>
|
||
|
*> \verbatim
|
||
|
*>
|
||
|
*> CGTSV solves the equation
|
||
|
*>
|
||
|
*> A*X = B,
|
||
|
*>
|
||
|
*> where A is an N-by-N tridiagonal matrix, by Gaussian elimination with
|
||
|
*> partial pivoting.
|
||
|
*>
|
||
|
*> Note that the equation A**T *X = B may be solved by interchanging the
|
||
|
*> order of the arguments DU and DL.
|
||
|
*> \endverbatim
|
||
|
*
|
||
|
* Arguments:
|
||
|
* ==========
|
||
|
*
|
||
|
*> \param[in] N
|
||
|
*> \verbatim
|
||
|
*> N is INTEGER
|
||
|
*> The order of the matrix A. N >= 0.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] NRHS
|
||
|
*> \verbatim
|
||
|
*> NRHS is INTEGER
|
||
|
*> The number of right hand sides, i.e., the number of columns
|
||
|
*> of the matrix B. NRHS >= 0.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in,out] DL
|
||
|
*> \verbatim
|
||
|
*> DL is COMPLEX array, dimension (N-1)
|
||
|
*> On entry, DL must contain the (n-1) subdiagonal elements of
|
||
|
*> A.
|
||
|
*> On exit, DL is overwritten by the (n-2) elements of the
|
||
|
*> second superdiagonal of the upper triangular matrix U from
|
||
|
*> the LU factorization of A, in DL(1), ..., DL(n-2).
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in,out] D
|
||
|
*> \verbatim
|
||
|
*> D is COMPLEX array, dimension (N)
|
||
|
*> On entry, D must contain the diagonal elements of A.
|
||
|
*> On exit, D is overwritten by the n diagonal elements of U.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in,out] DU
|
||
|
*> \verbatim
|
||
|
*> DU is COMPLEX array, dimension (N-1)
|
||
|
*> On entry, DU must contain the (n-1) superdiagonal elements
|
||
|
*> of A.
|
||
|
*> On exit, DU is overwritten by the (n-1) elements of the first
|
||
|
*> superdiagonal of U.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in,out] B
|
||
|
*> \verbatim
|
||
|
*> B is COMPLEX array, dimension (LDB,NRHS)
|
||
|
*> On entry, the N-by-NRHS right hand side matrix B.
|
||
|
*> On exit, if INFO = 0, the N-by-NRHS solution matrix X.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] LDB
|
||
|
*> \verbatim
|
||
|
*> LDB is INTEGER
|
||
|
*> The leading dimension of the array B. LDB >= max(1,N).
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] INFO
|
||
|
*> \verbatim
|
||
|
*> INFO is INTEGER
|
||
|
*> = 0: successful exit
|
||
|
*> < 0: if INFO = -i, the i-th argument had an illegal value
|
||
|
*> > 0: if INFO = i, U(i,i) is exactly zero, and the solution
|
||
|
*> has not been computed. The factorization has not been
|
||
|
*> completed unless i = N.
|
||
|
*> \endverbatim
|
||
|
*
|
||
|
* Authors:
|
||
|
* ========
|
||
|
*
|
||
|
*> \author Univ. of Tennessee
|
||
|
*> \author Univ. of California Berkeley
|
||
|
*> \author Univ. of Colorado Denver
|
||
|
*> \author NAG Ltd.
|
||
|
*
|
||
|
*> \ingroup complexGTsolve
|
||
|
*
|
||
|
* =====================================================================
|
||
|
SUBROUTINE CGTSV( N, NRHS, DL, D, DU, B, LDB, INFO )
|
||
|
*
|
||
|
* -- LAPACK driver routine --
|
||
|
* -- LAPACK is a software package provided by Univ. of Tennessee, --
|
||
|
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
||
|
*
|
||
|
* .. Scalar Arguments ..
|
||
|
INTEGER INFO, LDB, N, NRHS
|
||
|
* ..
|
||
|
* .. Array Arguments ..
|
||
|
COMPLEX B( LDB, * ), D( * ), DL( * ), DU( * )
|
||
|
* ..
|
||
|
*
|
||
|
* =====================================================================
|
||
|
*
|
||
|
* .. Parameters ..
|
||
|
COMPLEX ZERO
|
||
|
PARAMETER ( ZERO = ( 0.0E+0, 0.0E+0 ) )
|
||
|
* ..
|
||
|
* .. Local Scalars ..
|
||
|
INTEGER J, K
|
||
|
COMPLEX MULT, TEMP, ZDUM
|
||
|
* ..
|
||
|
* .. Intrinsic Functions ..
|
||
|
INTRINSIC ABS, AIMAG, MAX, REAL
|
||
|
* ..
|
||
|
* .. External Subroutines ..
|
||
|
EXTERNAL XERBLA
|
||
|
* ..
|
||
|
* .. Statement Functions ..
|
||
|
REAL CABS1
|
||
|
* ..
|
||
|
* .. Statement Function definitions ..
|
||
|
CABS1( ZDUM ) = ABS( REAL( ZDUM ) ) + ABS( AIMAG( ZDUM ) )
|
||
|
* ..
|
||
|
* .. Executable Statements ..
|
||
|
*
|
||
|
INFO = 0
|
||
|
IF( N.LT.0 ) THEN
|
||
|
INFO = -1
|
||
|
ELSE IF( NRHS.LT.0 ) THEN
|
||
|
INFO = -2
|
||
|
ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
|
||
|
INFO = -7
|
||
|
END IF
|
||
|
IF( INFO.NE.0 ) THEN
|
||
|
CALL XERBLA( 'CGTSV ', -INFO )
|
||
|
RETURN
|
||
|
END IF
|
||
|
*
|
||
|
IF( N.EQ.0 )
|
||
|
$ RETURN
|
||
|
*
|
||
|
DO 30 K = 1, N - 1
|
||
|
IF( DL( K ).EQ.ZERO ) THEN
|
||
|
*
|
||
|
* Subdiagonal is zero, no elimination is required.
|
||
|
*
|
||
|
IF( D( K ).EQ.ZERO ) THEN
|
||
|
*
|
||
|
* Diagonal is zero: set INFO = K and return; a unique
|
||
|
* solution can not be found.
|
||
|
*
|
||
|
INFO = K
|
||
|
RETURN
|
||
|
END IF
|
||
|
ELSE IF( CABS1( D( K ) ).GE.CABS1( DL( K ) ) ) THEN
|
||
|
*
|
||
|
* No row interchange required
|
||
|
*
|
||
|
MULT = DL( K ) / D( K )
|
||
|
D( K+1 ) = D( K+1 ) - MULT*DU( K )
|
||
|
DO 10 J = 1, NRHS
|
||
|
B( K+1, J ) = B( K+1, J ) - MULT*B( K, J )
|
||
|
10 CONTINUE
|
||
|
IF( K.LT.( N-1 ) )
|
||
|
$ DL( K ) = ZERO
|
||
|
ELSE
|
||
|
*
|
||
|
* Interchange rows K and K+1
|
||
|
*
|
||
|
MULT = D( K ) / DL( K )
|
||
|
D( K ) = DL( K )
|
||
|
TEMP = D( K+1 )
|
||
|
D( K+1 ) = DU( K ) - MULT*TEMP
|
||
|
IF( K.LT.( N-1 ) ) THEN
|
||
|
DL( K ) = DU( K+1 )
|
||
|
DU( K+1 ) = -MULT*DL( K )
|
||
|
END IF
|
||
|
DU( K ) = TEMP
|
||
|
DO 20 J = 1, NRHS
|
||
|
TEMP = B( K, J )
|
||
|
B( K, J ) = B( K+1, J )
|
||
|
B( K+1, J ) = TEMP - MULT*B( K+1, J )
|
||
|
20 CONTINUE
|
||
|
END IF
|
||
|
30 CONTINUE
|
||
|
IF( D( N ).EQ.ZERO ) THEN
|
||
|
INFO = N
|
||
|
RETURN
|
||
|
END IF
|
||
|
*
|
||
|
* Back solve with the matrix U from the factorization.
|
||
|
*
|
||
|
DO 50 J = 1, NRHS
|
||
|
B( N, J ) = B( N, J ) / D( N )
|
||
|
IF( N.GT.1 )
|
||
|
$ B( N-1, J ) = ( B( N-1, J )-DU( N-1 )*B( N, J ) ) / D( N-1 )
|
||
|
DO 40 K = N - 2, 1, -1
|
||
|
B( K, J ) = ( B( K, J )-DU( K )*B( K+1, J )-DL( K )*
|
||
|
$ B( K+2, J ) ) / D( K )
|
||
|
40 CONTINUE
|
||
|
50 CONTINUE
|
||
|
*
|
||
|
RETURN
|
||
|
*
|
||
|
* End of CGTSV
|
||
|
*
|
||
|
END
|