You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
551 lines
17 KiB
551 lines
17 KiB
2 years ago
|
*> \brief \b CHFRK performs a Hermitian rank-k operation for matrix in RFP format.
|
||
|
*
|
||
|
* =========== DOCUMENTATION ===========
|
||
|
*
|
||
|
* Online html documentation available at
|
||
|
* http://www.netlib.org/lapack/explore-html/
|
||
|
*
|
||
|
*> \htmlonly
|
||
|
*> Download CHFRK + dependencies
|
||
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/chfrk.f">
|
||
|
*> [TGZ]</a>
|
||
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/chfrk.f">
|
||
|
*> [ZIP]</a>
|
||
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/chfrk.f">
|
||
|
*> [TXT]</a>
|
||
|
*> \endhtmlonly
|
||
|
*
|
||
|
* Definition:
|
||
|
* ===========
|
||
|
*
|
||
|
* SUBROUTINE CHFRK( TRANSR, UPLO, TRANS, N, K, ALPHA, A, LDA, BETA,
|
||
|
* C )
|
||
|
*
|
||
|
* .. Scalar Arguments ..
|
||
|
* REAL ALPHA, BETA
|
||
|
* INTEGER K, LDA, N
|
||
|
* CHARACTER TRANS, TRANSR, UPLO
|
||
|
* ..
|
||
|
* .. Array Arguments ..
|
||
|
* COMPLEX A( LDA, * ), C( * )
|
||
|
* ..
|
||
|
*
|
||
|
*
|
||
|
*> \par Purpose:
|
||
|
* =============
|
||
|
*>
|
||
|
*> \verbatim
|
||
|
*>
|
||
|
*> Level 3 BLAS like routine for C in RFP Format.
|
||
|
*>
|
||
|
*> CHFRK performs one of the Hermitian rank--k operations
|
||
|
*>
|
||
|
*> C := alpha*A*A**H + beta*C,
|
||
|
*>
|
||
|
*> or
|
||
|
*>
|
||
|
*> C := alpha*A**H*A + beta*C,
|
||
|
*>
|
||
|
*> where alpha and beta are real scalars, C is an n--by--n Hermitian
|
||
|
*> matrix and A is an n--by--k matrix in the first case and a k--by--n
|
||
|
*> matrix in the second case.
|
||
|
*> \endverbatim
|
||
|
*
|
||
|
* Arguments:
|
||
|
* ==========
|
||
|
*
|
||
|
*> \param[in] TRANSR
|
||
|
*> \verbatim
|
||
|
*> TRANSR is CHARACTER*1
|
||
|
*> = 'N': The Normal Form of RFP A is stored;
|
||
|
*> = 'C': The Conjugate-transpose Form of RFP A is stored.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] UPLO
|
||
|
*> \verbatim
|
||
|
*> UPLO is CHARACTER*1
|
||
|
*> On entry, UPLO specifies whether the upper or lower
|
||
|
*> triangular part of the array C is to be referenced as
|
||
|
*> follows:
|
||
|
*>
|
||
|
*> UPLO = 'U' or 'u' Only the upper triangular part of C
|
||
|
*> is to be referenced.
|
||
|
*>
|
||
|
*> UPLO = 'L' or 'l' Only the lower triangular part of C
|
||
|
*> is to be referenced.
|
||
|
*>
|
||
|
*> Unchanged on exit.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] TRANS
|
||
|
*> \verbatim
|
||
|
*> TRANS is CHARACTER*1
|
||
|
*> On entry, TRANS specifies the operation to be performed as
|
||
|
*> follows:
|
||
|
*>
|
||
|
*> TRANS = 'N' or 'n' C := alpha*A*A**H + beta*C.
|
||
|
*>
|
||
|
*> TRANS = 'C' or 'c' C := alpha*A**H*A + beta*C.
|
||
|
*>
|
||
|
*> Unchanged on exit.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] N
|
||
|
*> \verbatim
|
||
|
*> N is INTEGER
|
||
|
*> On entry, N specifies the order of the matrix C. N must be
|
||
|
*> at least zero.
|
||
|
*> Unchanged on exit.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] K
|
||
|
*> \verbatim
|
||
|
*> K is INTEGER
|
||
|
*> On entry with TRANS = 'N' or 'n', K specifies the number
|
||
|
*> of columns of the matrix A, and on entry with
|
||
|
*> TRANS = 'C' or 'c', K specifies the number of rows of the
|
||
|
*> matrix A. K must be at least zero.
|
||
|
*> Unchanged on exit.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] ALPHA
|
||
|
*> \verbatim
|
||
|
*> ALPHA is REAL
|
||
|
*> On entry, ALPHA specifies the scalar alpha.
|
||
|
*> Unchanged on exit.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] A
|
||
|
*> \verbatim
|
||
|
*> A is COMPLEX array, dimension (LDA,ka)
|
||
|
*> where KA
|
||
|
*> is K when TRANS = 'N' or 'n', and is N otherwise. Before
|
||
|
*> entry with TRANS = 'N' or 'n', the leading N--by--K part of
|
||
|
*> the array A must contain the matrix A, otherwise the leading
|
||
|
*> K--by--N part of the array A must contain the matrix A.
|
||
|
*> Unchanged on exit.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] LDA
|
||
|
*> \verbatim
|
||
|
*> LDA is INTEGER
|
||
|
*> On entry, LDA specifies the first dimension of A as declared
|
||
|
*> in the calling (sub) program. When TRANS = 'N' or 'n'
|
||
|
*> then LDA must be at least max( 1, n ), otherwise LDA must
|
||
|
*> be at least max( 1, k ).
|
||
|
*> Unchanged on exit.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] BETA
|
||
|
*> \verbatim
|
||
|
*> BETA is REAL
|
||
|
*> On entry, BETA specifies the scalar beta.
|
||
|
*> Unchanged on exit.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in,out] C
|
||
|
*> \verbatim
|
||
|
*> C is COMPLEX array, dimension (N*(N+1)/2)
|
||
|
*> On entry, the matrix A in RFP Format. RFP Format is
|
||
|
*> described by TRANSR, UPLO and N. Note that the imaginary
|
||
|
*> parts of the diagonal elements need not be set, they are
|
||
|
*> assumed to be zero, and on exit they are set to zero.
|
||
|
*> \endverbatim
|
||
|
*
|
||
|
* Authors:
|
||
|
* ========
|
||
|
*
|
||
|
*> \author Univ. of Tennessee
|
||
|
*> \author Univ. of California Berkeley
|
||
|
*> \author Univ. of Colorado Denver
|
||
|
*> \author NAG Ltd.
|
||
|
*
|
||
|
*> \ingroup complexOTHERcomputational
|
||
|
*
|
||
|
* =====================================================================
|
||
|
SUBROUTINE CHFRK( TRANSR, UPLO, TRANS, N, K, ALPHA, A, LDA, BETA,
|
||
|
$ C )
|
||
|
*
|
||
|
* -- LAPACK computational routine --
|
||
|
* -- LAPACK is a software package provided by Univ. of Tennessee, --
|
||
|
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
||
|
*
|
||
|
* .. Scalar Arguments ..
|
||
|
REAL ALPHA, BETA
|
||
|
INTEGER K, LDA, N
|
||
|
CHARACTER TRANS, TRANSR, UPLO
|
||
|
* ..
|
||
|
* .. Array Arguments ..
|
||
|
COMPLEX A( LDA, * ), C( * )
|
||
|
* ..
|
||
|
*
|
||
|
* =====================================================================
|
||
|
*
|
||
|
* ..
|
||
|
* .. Parameters ..
|
||
|
REAL ONE, ZERO
|
||
|
COMPLEX CZERO
|
||
|
PARAMETER ( ONE = 1.0E+0, ZERO = 0.0E+0 )
|
||
|
PARAMETER ( CZERO = ( 0.0E+0, 0.0E+0 ) )
|
||
|
* ..
|
||
|
* .. Local Scalars ..
|
||
|
LOGICAL LOWER, NORMALTRANSR, NISODD, NOTRANS
|
||
|
INTEGER INFO, NROWA, J, NK, N1, N2
|
||
|
COMPLEX CALPHA, CBETA
|
||
|
* ..
|
||
|
* .. External Functions ..
|
||
|
LOGICAL LSAME
|
||
|
EXTERNAL LSAME
|
||
|
* ..
|
||
|
* .. External Subroutines ..
|
||
|
EXTERNAL CGEMM, CHERK, XERBLA
|
||
|
* ..
|
||
|
* .. Intrinsic Functions ..
|
||
|
INTRINSIC MAX, CMPLX
|
||
|
* ..
|
||
|
* .. Executable Statements ..
|
||
|
*
|
||
|
*
|
||
|
* Test the input parameters.
|
||
|
*
|
||
|
INFO = 0
|
||
|
NORMALTRANSR = LSAME( TRANSR, 'N' )
|
||
|
LOWER = LSAME( UPLO, 'L' )
|
||
|
NOTRANS = LSAME( TRANS, 'N' )
|
||
|
*
|
||
|
IF( NOTRANS ) THEN
|
||
|
NROWA = N
|
||
|
ELSE
|
||
|
NROWA = K
|
||
|
END IF
|
||
|
*
|
||
|
IF( .NOT.NORMALTRANSR .AND. .NOT.LSAME( TRANSR, 'C' ) ) THEN
|
||
|
INFO = -1
|
||
|
ELSE IF( .NOT.LOWER .AND. .NOT.LSAME( UPLO, 'U' ) ) THEN
|
||
|
INFO = -2
|
||
|
ELSE IF( .NOT.NOTRANS .AND. .NOT.LSAME( TRANS, 'C' ) ) THEN
|
||
|
INFO = -3
|
||
|
ELSE IF( N.LT.0 ) THEN
|
||
|
INFO = -4
|
||
|
ELSE IF( K.LT.0 ) THEN
|
||
|
INFO = -5
|
||
|
ELSE IF( LDA.LT.MAX( 1, NROWA ) ) THEN
|
||
|
INFO = -8
|
||
|
END IF
|
||
|
IF( INFO.NE.0 ) THEN
|
||
|
CALL XERBLA( 'CHFRK ', -INFO )
|
||
|
RETURN
|
||
|
END IF
|
||
|
*
|
||
|
* Quick return if possible.
|
||
|
*
|
||
|
* The quick return case: ((ALPHA.EQ.0).AND.(BETA.NE.ZERO)) is not
|
||
|
* done (it is in CHERK for example) and left in the general case.
|
||
|
*
|
||
|
IF( ( N.EQ.0 ) .OR. ( ( ( ALPHA.EQ.ZERO ) .OR. ( K.EQ.0 ) ) .AND.
|
||
|
$ ( BETA.EQ.ONE ) ) )RETURN
|
||
|
*
|
||
|
IF( ( ALPHA.EQ.ZERO ) .AND. ( BETA.EQ.ZERO ) ) THEN
|
||
|
DO J = 1, ( ( N*( N+1 ) ) / 2 )
|
||
|
C( J ) = CZERO
|
||
|
END DO
|
||
|
RETURN
|
||
|
END IF
|
||
|
*
|
||
|
CALPHA = CMPLX( ALPHA, ZERO )
|
||
|
CBETA = CMPLX( BETA, ZERO )
|
||
|
*
|
||
|
* C is N-by-N.
|
||
|
* If N is odd, set NISODD = .TRUE., and N1 and N2.
|
||
|
* If N is even, NISODD = .FALSE., and NK.
|
||
|
*
|
||
|
IF( MOD( N, 2 ).EQ.0 ) THEN
|
||
|
NISODD = .FALSE.
|
||
|
NK = N / 2
|
||
|
ELSE
|
||
|
NISODD = .TRUE.
|
||
|
IF( LOWER ) THEN
|
||
|
N2 = N / 2
|
||
|
N1 = N - N2
|
||
|
ELSE
|
||
|
N1 = N / 2
|
||
|
N2 = N - N1
|
||
|
END IF
|
||
|
END IF
|
||
|
*
|
||
|
IF( NISODD ) THEN
|
||
|
*
|
||
|
* N is odd
|
||
|
*
|
||
|
IF( NORMALTRANSR ) THEN
|
||
|
*
|
||
|
* N is odd and TRANSR = 'N'
|
||
|
*
|
||
|
IF( LOWER ) THEN
|
||
|
*
|
||
|
* N is odd, TRANSR = 'N', and UPLO = 'L'
|
||
|
*
|
||
|
IF( NOTRANS ) THEN
|
||
|
*
|
||
|
* N is odd, TRANSR = 'N', UPLO = 'L', and TRANS = 'N'
|
||
|
*
|
||
|
CALL CHERK( 'L', 'N', N1, K, ALPHA, A( 1, 1 ), LDA,
|
||
|
$ BETA, C( 1 ), N )
|
||
|
CALL CHERK( 'U', 'N', N2, K, ALPHA, A( N1+1, 1 ), LDA,
|
||
|
$ BETA, C( N+1 ), N )
|
||
|
CALL CGEMM( 'N', 'C', N2, N1, K, CALPHA, A( N1+1, 1 ),
|
||
|
$ LDA, A( 1, 1 ), LDA, CBETA, C( N1+1 ), N )
|
||
|
*
|
||
|
ELSE
|
||
|
*
|
||
|
* N is odd, TRANSR = 'N', UPLO = 'L', and TRANS = 'C'
|
||
|
*
|
||
|
CALL CHERK( 'L', 'C', N1, K, ALPHA, A( 1, 1 ), LDA,
|
||
|
$ BETA, C( 1 ), N )
|
||
|
CALL CHERK( 'U', 'C', N2, K, ALPHA, A( 1, N1+1 ), LDA,
|
||
|
$ BETA, C( N+1 ), N )
|
||
|
CALL CGEMM( 'C', 'N', N2, N1, K, CALPHA, A( 1, N1+1 ),
|
||
|
$ LDA, A( 1, 1 ), LDA, CBETA, C( N1+1 ), N )
|
||
|
*
|
||
|
END IF
|
||
|
*
|
||
|
ELSE
|
||
|
*
|
||
|
* N is odd, TRANSR = 'N', and UPLO = 'U'
|
||
|
*
|
||
|
IF( NOTRANS ) THEN
|
||
|
*
|
||
|
* N is odd, TRANSR = 'N', UPLO = 'U', and TRANS = 'N'
|
||
|
*
|
||
|
CALL CHERK( 'L', 'N', N1, K, ALPHA, A( 1, 1 ), LDA,
|
||
|
$ BETA, C( N2+1 ), N )
|
||
|
CALL CHERK( 'U', 'N', N2, K, ALPHA, A( N2, 1 ), LDA,
|
||
|
$ BETA, C( N1+1 ), N )
|
||
|
CALL CGEMM( 'N', 'C', N1, N2, K, CALPHA, A( 1, 1 ),
|
||
|
$ LDA, A( N2, 1 ), LDA, CBETA, C( 1 ), N )
|
||
|
*
|
||
|
ELSE
|
||
|
*
|
||
|
* N is odd, TRANSR = 'N', UPLO = 'U', and TRANS = 'C'
|
||
|
*
|
||
|
CALL CHERK( 'L', 'C', N1, K, ALPHA, A( 1, 1 ), LDA,
|
||
|
$ BETA, C( N2+1 ), N )
|
||
|
CALL CHERK( 'U', 'C', N2, K, ALPHA, A( 1, N2 ), LDA,
|
||
|
$ BETA, C( N1+1 ), N )
|
||
|
CALL CGEMM( 'C', 'N', N1, N2, K, CALPHA, A( 1, 1 ),
|
||
|
$ LDA, A( 1, N2 ), LDA, CBETA, C( 1 ), N )
|
||
|
*
|
||
|
END IF
|
||
|
*
|
||
|
END IF
|
||
|
*
|
||
|
ELSE
|
||
|
*
|
||
|
* N is odd, and TRANSR = 'C'
|
||
|
*
|
||
|
IF( LOWER ) THEN
|
||
|
*
|
||
|
* N is odd, TRANSR = 'C', and UPLO = 'L'
|
||
|
*
|
||
|
IF( NOTRANS ) THEN
|
||
|
*
|
||
|
* N is odd, TRANSR = 'C', UPLO = 'L', and TRANS = 'N'
|
||
|
*
|
||
|
CALL CHERK( 'U', 'N', N1, K, ALPHA, A( 1, 1 ), LDA,
|
||
|
$ BETA, C( 1 ), N1 )
|
||
|
CALL CHERK( 'L', 'N', N2, K, ALPHA, A( N1+1, 1 ), LDA,
|
||
|
$ BETA, C( 2 ), N1 )
|
||
|
CALL CGEMM( 'N', 'C', N1, N2, K, CALPHA, A( 1, 1 ),
|
||
|
$ LDA, A( N1+1, 1 ), LDA, CBETA,
|
||
|
$ C( N1*N1+1 ), N1 )
|
||
|
*
|
||
|
ELSE
|
||
|
*
|
||
|
* N is odd, TRANSR = 'C', UPLO = 'L', and TRANS = 'C'
|
||
|
*
|
||
|
CALL CHERK( 'U', 'C', N1, K, ALPHA, A( 1, 1 ), LDA,
|
||
|
$ BETA, C( 1 ), N1 )
|
||
|
CALL CHERK( 'L', 'C', N2, K, ALPHA, A( 1, N1+1 ), LDA,
|
||
|
$ BETA, C( 2 ), N1 )
|
||
|
CALL CGEMM( 'C', 'N', N1, N2, K, CALPHA, A( 1, 1 ),
|
||
|
$ LDA, A( 1, N1+1 ), LDA, CBETA,
|
||
|
$ C( N1*N1+1 ), N1 )
|
||
|
*
|
||
|
END IF
|
||
|
*
|
||
|
ELSE
|
||
|
*
|
||
|
* N is odd, TRANSR = 'C', and UPLO = 'U'
|
||
|
*
|
||
|
IF( NOTRANS ) THEN
|
||
|
*
|
||
|
* N is odd, TRANSR = 'C', UPLO = 'U', and TRANS = 'N'
|
||
|
*
|
||
|
CALL CHERK( 'U', 'N', N1, K, ALPHA, A( 1, 1 ), LDA,
|
||
|
$ BETA, C( N2*N2+1 ), N2 )
|
||
|
CALL CHERK( 'L', 'N', N2, K, ALPHA, A( N1+1, 1 ), LDA,
|
||
|
$ BETA, C( N1*N2+1 ), N2 )
|
||
|
CALL CGEMM( 'N', 'C', N2, N1, K, CALPHA, A( N1+1, 1 ),
|
||
|
$ LDA, A( 1, 1 ), LDA, CBETA, C( 1 ), N2 )
|
||
|
*
|
||
|
ELSE
|
||
|
*
|
||
|
* N is odd, TRANSR = 'C', UPLO = 'U', and TRANS = 'C'
|
||
|
*
|
||
|
CALL CHERK( 'U', 'C', N1, K, ALPHA, A( 1, 1 ), LDA,
|
||
|
$ BETA, C( N2*N2+1 ), N2 )
|
||
|
CALL CHERK( 'L', 'C', N2, K, ALPHA, A( 1, N1+1 ), LDA,
|
||
|
$ BETA, C( N1*N2+1 ), N2 )
|
||
|
CALL CGEMM( 'C', 'N', N2, N1, K, CALPHA, A( 1, N1+1 ),
|
||
|
$ LDA, A( 1, 1 ), LDA, CBETA, C( 1 ), N2 )
|
||
|
*
|
||
|
END IF
|
||
|
*
|
||
|
END IF
|
||
|
*
|
||
|
END IF
|
||
|
*
|
||
|
ELSE
|
||
|
*
|
||
|
* N is even
|
||
|
*
|
||
|
IF( NORMALTRANSR ) THEN
|
||
|
*
|
||
|
* N is even and TRANSR = 'N'
|
||
|
*
|
||
|
IF( LOWER ) THEN
|
||
|
*
|
||
|
* N is even, TRANSR = 'N', and UPLO = 'L'
|
||
|
*
|
||
|
IF( NOTRANS ) THEN
|
||
|
*
|
||
|
* N is even, TRANSR = 'N', UPLO = 'L', and TRANS = 'N'
|
||
|
*
|
||
|
CALL CHERK( 'L', 'N', NK, K, ALPHA, A( 1, 1 ), LDA,
|
||
|
$ BETA, C( 2 ), N+1 )
|
||
|
CALL CHERK( 'U', 'N', NK, K, ALPHA, A( NK+1, 1 ), LDA,
|
||
|
$ BETA, C( 1 ), N+1 )
|
||
|
CALL CGEMM( 'N', 'C', NK, NK, K, CALPHA, A( NK+1, 1 ),
|
||
|
$ LDA, A( 1, 1 ), LDA, CBETA, C( NK+2 ),
|
||
|
$ N+1 )
|
||
|
*
|
||
|
ELSE
|
||
|
*
|
||
|
* N is even, TRANSR = 'N', UPLO = 'L', and TRANS = 'C'
|
||
|
*
|
||
|
CALL CHERK( 'L', 'C', NK, K, ALPHA, A( 1, 1 ), LDA,
|
||
|
$ BETA, C( 2 ), N+1 )
|
||
|
CALL CHERK( 'U', 'C', NK, K, ALPHA, A( 1, NK+1 ), LDA,
|
||
|
$ BETA, C( 1 ), N+1 )
|
||
|
CALL CGEMM( 'C', 'N', NK, NK, K, CALPHA, A( 1, NK+1 ),
|
||
|
$ LDA, A( 1, 1 ), LDA, CBETA, C( NK+2 ),
|
||
|
$ N+1 )
|
||
|
*
|
||
|
END IF
|
||
|
*
|
||
|
ELSE
|
||
|
*
|
||
|
* N is even, TRANSR = 'N', and UPLO = 'U'
|
||
|
*
|
||
|
IF( NOTRANS ) THEN
|
||
|
*
|
||
|
* N is even, TRANSR = 'N', UPLO = 'U', and TRANS = 'N'
|
||
|
*
|
||
|
CALL CHERK( 'L', 'N', NK, K, ALPHA, A( 1, 1 ), LDA,
|
||
|
$ BETA, C( NK+2 ), N+1 )
|
||
|
CALL CHERK( 'U', 'N', NK, K, ALPHA, A( NK+1, 1 ), LDA,
|
||
|
$ BETA, C( NK+1 ), N+1 )
|
||
|
CALL CGEMM( 'N', 'C', NK, NK, K, CALPHA, A( 1, 1 ),
|
||
|
$ LDA, A( NK+1, 1 ), LDA, CBETA, C( 1 ),
|
||
|
$ N+1 )
|
||
|
*
|
||
|
ELSE
|
||
|
*
|
||
|
* N is even, TRANSR = 'N', UPLO = 'U', and TRANS = 'C'
|
||
|
*
|
||
|
CALL CHERK( 'L', 'C', NK, K, ALPHA, A( 1, 1 ), LDA,
|
||
|
$ BETA, C( NK+2 ), N+1 )
|
||
|
CALL CHERK( 'U', 'C', NK, K, ALPHA, A( 1, NK+1 ), LDA,
|
||
|
$ BETA, C( NK+1 ), N+1 )
|
||
|
CALL CGEMM( 'C', 'N', NK, NK, K, CALPHA, A( 1, 1 ),
|
||
|
$ LDA, A( 1, NK+1 ), LDA, CBETA, C( 1 ),
|
||
|
$ N+1 )
|
||
|
*
|
||
|
END IF
|
||
|
*
|
||
|
END IF
|
||
|
*
|
||
|
ELSE
|
||
|
*
|
||
|
* N is even, and TRANSR = 'C'
|
||
|
*
|
||
|
IF( LOWER ) THEN
|
||
|
*
|
||
|
* N is even, TRANSR = 'C', and UPLO = 'L'
|
||
|
*
|
||
|
IF( NOTRANS ) THEN
|
||
|
*
|
||
|
* N is even, TRANSR = 'C', UPLO = 'L', and TRANS = 'N'
|
||
|
*
|
||
|
CALL CHERK( 'U', 'N', NK, K, ALPHA, A( 1, 1 ), LDA,
|
||
|
$ BETA, C( NK+1 ), NK )
|
||
|
CALL CHERK( 'L', 'N', NK, K, ALPHA, A( NK+1, 1 ), LDA,
|
||
|
$ BETA, C( 1 ), NK )
|
||
|
CALL CGEMM( 'N', 'C', NK, NK, K, CALPHA, A( 1, 1 ),
|
||
|
$ LDA, A( NK+1, 1 ), LDA, CBETA,
|
||
|
$ C( ( ( NK+1 )*NK )+1 ), NK )
|
||
|
*
|
||
|
ELSE
|
||
|
*
|
||
|
* N is even, TRANSR = 'C', UPLO = 'L', and TRANS = 'C'
|
||
|
*
|
||
|
CALL CHERK( 'U', 'C', NK, K, ALPHA, A( 1, 1 ), LDA,
|
||
|
$ BETA, C( NK+1 ), NK )
|
||
|
CALL CHERK( 'L', 'C', NK, K, ALPHA, A( 1, NK+1 ), LDA,
|
||
|
$ BETA, C( 1 ), NK )
|
||
|
CALL CGEMM( 'C', 'N', NK, NK, K, CALPHA, A( 1, 1 ),
|
||
|
$ LDA, A( 1, NK+1 ), LDA, CBETA,
|
||
|
$ C( ( ( NK+1 )*NK )+1 ), NK )
|
||
|
*
|
||
|
END IF
|
||
|
*
|
||
|
ELSE
|
||
|
*
|
||
|
* N is even, TRANSR = 'C', and UPLO = 'U'
|
||
|
*
|
||
|
IF( NOTRANS ) THEN
|
||
|
*
|
||
|
* N is even, TRANSR = 'C', UPLO = 'U', and TRANS = 'N'
|
||
|
*
|
||
|
CALL CHERK( 'U', 'N', NK, K, ALPHA, A( 1, 1 ), LDA,
|
||
|
$ BETA, C( NK*( NK+1 )+1 ), NK )
|
||
|
CALL CHERK( 'L', 'N', NK, K, ALPHA, A( NK+1, 1 ), LDA,
|
||
|
$ BETA, C( NK*NK+1 ), NK )
|
||
|
CALL CGEMM( 'N', 'C', NK, NK, K, CALPHA, A( NK+1, 1 ),
|
||
|
$ LDA, A( 1, 1 ), LDA, CBETA, C( 1 ), NK )
|
||
|
*
|
||
|
ELSE
|
||
|
*
|
||
|
* N is even, TRANSR = 'C', UPLO = 'U', and TRANS = 'C'
|
||
|
*
|
||
|
CALL CHERK( 'U', 'C', NK, K, ALPHA, A( 1, 1 ), LDA,
|
||
|
$ BETA, C( NK*( NK+1 )+1 ), NK )
|
||
|
CALL CHERK( 'L', 'C', NK, K, ALPHA, A( 1, NK+1 ), LDA,
|
||
|
$ BETA, C( NK*NK+1 ), NK )
|
||
|
CALL CGEMM( 'C', 'N', NK, NK, K, CALPHA, A( 1, NK+1 ),
|
||
|
$ LDA, A( 1, 1 ), LDA, CBETA, C( 1 ), NK )
|
||
|
*
|
||
|
END IF
|
||
|
*
|
||
|
END IF
|
||
|
*
|
||
|
END IF
|
||
|
*
|
||
|
END IF
|
||
|
*
|
||
|
RETURN
|
||
|
*
|
||
|
* End of CHFRK
|
||
|
*
|
||
|
END
|