You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
264 lines
7.8 KiB
264 lines
7.8 KiB
2 years ago
|
*> \brief \b CLARZT forms the triangular factor T of a block reflector H = I - vtvH.
|
||
|
*
|
||
|
* =========== DOCUMENTATION ===========
|
||
|
*
|
||
|
* Online html documentation available at
|
||
|
* http://www.netlib.org/lapack/explore-html/
|
||
|
*
|
||
|
*> \htmlonly
|
||
|
*> Download CLARZT + dependencies
|
||
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/clarzt.f">
|
||
|
*> [TGZ]</a>
|
||
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/clarzt.f">
|
||
|
*> [ZIP]</a>
|
||
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/clarzt.f">
|
||
|
*> [TXT]</a>
|
||
|
*> \endhtmlonly
|
||
|
*
|
||
|
* Definition:
|
||
|
* ===========
|
||
|
*
|
||
|
* SUBROUTINE CLARZT( DIRECT, STOREV, N, K, V, LDV, TAU, T, LDT )
|
||
|
*
|
||
|
* .. Scalar Arguments ..
|
||
|
* CHARACTER DIRECT, STOREV
|
||
|
* INTEGER K, LDT, LDV, N
|
||
|
* ..
|
||
|
* .. Array Arguments ..
|
||
|
* COMPLEX T( LDT, * ), TAU( * ), V( LDV, * )
|
||
|
* ..
|
||
|
*
|
||
|
*
|
||
|
*> \par Purpose:
|
||
|
* =============
|
||
|
*>
|
||
|
*> \verbatim
|
||
|
*>
|
||
|
*> CLARZT forms the triangular factor T of a complex block reflector
|
||
|
*> H of order > n, which is defined as a product of k elementary
|
||
|
*> reflectors.
|
||
|
*>
|
||
|
*> If DIRECT = 'F', H = H(1) H(2) . . . H(k) and T is upper triangular;
|
||
|
*>
|
||
|
*> If DIRECT = 'B', H = H(k) . . . H(2) H(1) and T is lower triangular.
|
||
|
*>
|
||
|
*> If STOREV = 'C', the vector which defines the elementary reflector
|
||
|
*> H(i) is stored in the i-th column of the array V, and
|
||
|
*>
|
||
|
*> H = I - V * T * V**H
|
||
|
*>
|
||
|
*> If STOREV = 'R', the vector which defines the elementary reflector
|
||
|
*> H(i) is stored in the i-th row of the array V, and
|
||
|
*>
|
||
|
*> H = I - V**H * T * V
|
||
|
*>
|
||
|
*> Currently, only STOREV = 'R' and DIRECT = 'B' are supported.
|
||
|
*> \endverbatim
|
||
|
*
|
||
|
* Arguments:
|
||
|
* ==========
|
||
|
*
|
||
|
*> \param[in] DIRECT
|
||
|
*> \verbatim
|
||
|
*> DIRECT is CHARACTER*1
|
||
|
*> Specifies the order in which the elementary reflectors are
|
||
|
*> multiplied to form the block reflector:
|
||
|
*> = 'F': H = H(1) H(2) . . . H(k) (Forward, not supported yet)
|
||
|
*> = 'B': H = H(k) . . . H(2) H(1) (Backward)
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] STOREV
|
||
|
*> \verbatim
|
||
|
*> STOREV is CHARACTER*1
|
||
|
*> Specifies how the vectors which define the elementary
|
||
|
*> reflectors are stored (see also Further Details):
|
||
|
*> = 'C': columnwise (not supported yet)
|
||
|
*> = 'R': rowwise
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] N
|
||
|
*> \verbatim
|
||
|
*> N is INTEGER
|
||
|
*> The order of the block reflector H. N >= 0.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] K
|
||
|
*> \verbatim
|
||
|
*> K is INTEGER
|
||
|
*> The order of the triangular factor T (= the number of
|
||
|
*> elementary reflectors). K >= 1.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in,out] V
|
||
|
*> \verbatim
|
||
|
*> V is COMPLEX array, dimension
|
||
|
*> (LDV,K) if STOREV = 'C'
|
||
|
*> (LDV,N) if STOREV = 'R'
|
||
|
*> The matrix V. See further details.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] LDV
|
||
|
*> \verbatim
|
||
|
*> LDV is INTEGER
|
||
|
*> The leading dimension of the array V.
|
||
|
*> If STOREV = 'C', LDV >= max(1,N); if STOREV = 'R', LDV >= K.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] TAU
|
||
|
*> \verbatim
|
||
|
*> TAU is COMPLEX array, dimension (K)
|
||
|
*> TAU(i) must contain the scalar factor of the elementary
|
||
|
*> reflector H(i).
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] T
|
||
|
*> \verbatim
|
||
|
*> T is COMPLEX array, dimension (LDT,K)
|
||
|
*> The k by k triangular factor T of the block reflector.
|
||
|
*> If DIRECT = 'F', T is upper triangular; if DIRECT = 'B', T is
|
||
|
*> lower triangular. The rest of the array is not used.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] LDT
|
||
|
*> \verbatim
|
||
|
*> LDT is INTEGER
|
||
|
*> The leading dimension of the array T. LDT >= K.
|
||
|
*> \endverbatim
|
||
|
*
|
||
|
* Authors:
|
||
|
* ========
|
||
|
*
|
||
|
*> \author Univ. of Tennessee
|
||
|
*> \author Univ. of California Berkeley
|
||
|
*> \author Univ. of Colorado Denver
|
||
|
*> \author NAG Ltd.
|
||
|
*
|
||
|
*> \ingroup complexOTHERcomputational
|
||
|
*
|
||
|
*> \par Contributors:
|
||
|
* ==================
|
||
|
*>
|
||
|
*> A. Petitet, Computer Science Dept., Univ. of Tenn., Knoxville, USA
|
||
|
*
|
||
|
*> \par Further Details:
|
||
|
* =====================
|
||
|
*>
|
||
|
*> \verbatim
|
||
|
*>
|
||
|
*> The shape of the matrix V and the storage of the vectors which define
|
||
|
*> the H(i) is best illustrated by the following example with n = 5 and
|
||
|
*> k = 3. The elements equal to 1 are not stored; the corresponding
|
||
|
*> array elements are modified but restored on exit. The rest of the
|
||
|
*> array is not used.
|
||
|
*>
|
||
|
*> DIRECT = 'F' and STOREV = 'C': DIRECT = 'F' and STOREV = 'R':
|
||
|
*>
|
||
|
*> ______V_____
|
||
|
*> ( v1 v2 v3 ) / \
|
||
|
*> ( v1 v2 v3 ) ( v1 v1 v1 v1 v1 . . . . 1 )
|
||
|
*> V = ( v1 v2 v3 ) ( v2 v2 v2 v2 v2 . . . 1 )
|
||
|
*> ( v1 v2 v3 ) ( v3 v3 v3 v3 v3 . . 1 )
|
||
|
*> ( v1 v2 v3 )
|
||
|
*> . . .
|
||
|
*> . . .
|
||
|
*> 1 . .
|
||
|
*> 1 .
|
||
|
*> 1
|
||
|
*>
|
||
|
*> DIRECT = 'B' and STOREV = 'C': DIRECT = 'B' and STOREV = 'R':
|
||
|
*>
|
||
|
*> ______V_____
|
||
|
*> 1 / \
|
||
|
*> . 1 ( 1 . . . . v1 v1 v1 v1 v1 )
|
||
|
*> . . 1 ( . 1 . . . v2 v2 v2 v2 v2 )
|
||
|
*> . . . ( . . 1 . . v3 v3 v3 v3 v3 )
|
||
|
*> . . .
|
||
|
*> ( v1 v2 v3 )
|
||
|
*> ( v1 v2 v3 )
|
||
|
*> V = ( v1 v2 v3 )
|
||
|
*> ( v1 v2 v3 )
|
||
|
*> ( v1 v2 v3 )
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
* =====================================================================
|
||
|
SUBROUTINE CLARZT( DIRECT, STOREV, N, K, V, LDV, TAU, T, LDT )
|
||
|
*
|
||
|
* -- LAPACK computational routine --
|
||
|
* -- LAPACK is a software package provided by Univ. of Tennessee, --
|
||
|
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
||
|
*
|
||
|
* .. Scalar Arguments ..
|
||
|
CHARACTER DIRECT, STOREV
|
||
|
INTEGER K, LDT, LDV, N
|
||
|
* ..
|
||
|
* .. Array Arguments ..
|
||
|
COMPLEX T( LDT, * ), TAU( * ), V( LDV, * )
|
||
|
* ..
|
||
|
*
|
||
|
* =====================================================================
|
||
|
*
|
||
|
* .. Parameters ..
|
||
|
COMPLEX ZERO
|
||
|
PARAMETER ( ZERO = ( 0.0E+0, 0.0E+0 ) )
|
||
|
* ..
|
||
|
* .. Local Scalars ..
|
||
|
INTEGER I, INFO, J
|
||
|
* ..
|
||
|
* .. External Subroutines ..
|
||
|
EXTERNAL CGEMV, CLACGV, CTRMV, XERBLA
|
||
|
* ..
|
||
|
* .. External Functions ..
|
||
|
LOGICAL LSAME
|
||
|
EXTERNAL LSAME
|
||
|
* ..
|
||
|
* .. Executable Statements ..
|
||
|
*
|
||
|
* Check for currently supported options
|
||
|
*
|
||
|
INFO = 0
|
||
|
IF( .NOT.LSAME( DIRECT, 'B' ) ) THEN
|
||
|
INFO = -1
|
||
|
ELSE IF( .NOT.LSAME( STOREV, 'R' ) ) THEN
|
||
|
INFO = -2
|
||
|
END IF
|
||
|
IF( INFO.NE.0 ) THEN
|
||
|
CALL XERBLA( 'CLARZT', -INFO )
|
||
|
RETURN
|
||
|
END IF
|
||
|
*
|
||
|
DO 20 I = K, 1, -1
|
||
|
IF( TAU( I ).EQ.ZERO ) THEN
|
||
|
*
|
||
|
* H(i) = I
|
||
|
*
|
||
|
DO 10 J = I, K
|
||
|
T( J, I ) = ZERO
|
||
|
10 CONTINUE
|
||
|
ELSE
|
||
|
*
|
||
|
* general case
|
||
|
*
|
||
|
IF( I.LT.K ) THEN
|
||
|
*
|
||
|
* T(i+1:k,i) = - tau(i) * V(i+1:k,1:n) * V(i,1:n)**H
|
||
|
*
|
||
|
CALL CLACGV( N, V( I, 1 ), LDV )
|
||
|
CALL CGEMV( 'No transpose', K-I, N, -TAU( I ),
|
||
|
$ V( I+1, 1 ), LDV, V( I, 1 ), LDV, ZERO,
|
||
|
$ T( I+1, I ), 1 )
|
||
|
CALL CLACGV( N, V( I, 1 ), LDV )
|
||
|
*
|
||
|
* T(i+1:k,i) = T(i+1:k,i+1:k) * T(i+1:k,i)
|
||
|
*
|
||
|
CALL CTRMV( 'Lower', 'No transpose', 'Non-unit', K-I,
|
||
|
$ T( I+1, I+1 ), LDT, T( I+1, I ), 1 )
|
||
|
END IF
|
||
|
T( I, I ) = TAU( I )
|
||
|
END IF
|
||
|
20 CONTINUE
|
||
|
RETURN
|
||
|
*
|
||
|
* End of CLARZT
|
||
|
*
|
||
|
END
|