Cloned library LAPACK-3.11.0 with extra build files for internal package management.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

221 lines
5.9 KiB

2 years ago
*> \brief \b CPOEQUB
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download CPOEQUB + dependencies
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cpoequb.f">
*> [TGZ]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cpoequb.f">
*> [ZIP]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cpoequb.f">
*> [TXT]</a>
*> \endhtmlonly
*
* Definition:
* ===========
*
* SUBROUTINE CPOEQUB( N, A, LDA, S, SCOND, AMAX, INFO )
*
* .. Scalar Arguments ..
* INTEGER INFO, LDA, N
* REAL AMAX, SCOND
* ..
* .. Array Arguments ..
* COMPLEX A( LDA, * )
* REAL S( * )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> CPOEQUB computes row and column scalings intended to equilibrate a
*> Hermitian positive definite matrix A and reduce its condition number
*> (with respect to the two-norm). S contains the scale factors,
*> S(i) = 1/sqrt(A(i,i)), chosen so that the scaled matrix B with
*> elements B(i,j) = S(i)*A(i,j)*S(j) has ones on the diagonal. This
*> choice of S puts the condition number of B within a factor N of the
*> smallest possible condition number over all possible diagonal
*> scalings.
*>
*> This routine differs from CPOEQU by restricting the scaling factors
*> to a power of the radix. Barring over- and underflow, scaling by
*> these factors introduces no additional rounding errors. However, the
*> scaled diagonal entries are no longer approximately 1 but lie
*> between sqrt(radix) and 1/sqrt(radix).
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> The order of the matrix A. N >= 0.
*> \endverbatim
*>
*> \param[in] A
*> \verbatim
*> A is COMPLEX array, dimension (LDA,N)
*> The N-by-N Hermitian positive definite matrix whose scaling
*> factors are to be computed. Only the diagonal elements of A
*> are referenced.
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*> LDA is INTEGER
*> The leading dimension of the array A. LDA >= max(1,N).
*> \endverbatim
*>
*> \param[out] S
*> \verbatim
*> S is REAL array, dimension (N)
*> If INFO = 0, S contains the scale factors for A.
*> \endverbatim
*>
*> \param[out] SCOND
*> \verbatim
*> SCOND is REAL
*> If INFO = 0, S contains the ratio of the smallest S(i) to
*> the largest S(i). If SCOND >= 0.1 and AMAX is neither too
*> large nor too small, it is not worth scaling by S.
*> \endverbatim
*>
*> \param[out] AMAX
*> \verbatim
*> AMAX is REAL
*> Absolute value of largest matrix element. If AMAX is very
*> close to overflow or very close to underflow, the matrix
*> should be scaled.
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*> INFO is INTEGER
*> = 0: successful exit
*> < 0: if INFO = -i, the i-th argument had an illegal value
*> > 0: if INFO = i, the i-th diagonal element is nonpositive.
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \ingroup complexPOcomputational
*
* =====================================================================
SUBROUTINE CPOEQUB( N, A, LDA, S, SCOND, AMAX, INFO )
*
* -- LAPACK computational routine --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*
* .. Scalar Arguments ..
INTEGER INFO, LDA, N
REAL AMAX, SCOND
* ..
* .. Array Arguments ..
COMPLEX A( LDA, * )
REAL S( * )
* ..
*
* =====================================================================
*
* .. Parameters ..
REAL ZERO, ONE
PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0 )
* ..
* .. Local Scalars ..
INTEGER I
REAL SMIN, BASE, TMP
* ..
* .. External Functions ..
REAL SLAMCH
EXTERNAL SLAMCH
* ..
* .. External Subroutines ..
EXTERNAL XERBLA
* ..
* .. Intrinsic Functions ..
INTRINSIC MAX, MIN, SQRT, LOG, INT
* ..
* .. Executable Statements ..
*
* Test the input parameters.
*
* Positive definite only performs 1 pass of equilibration.
*
INFO = 0
IF( N.LT.0 ) THEN
INFO = -1
ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
INFO = -3
END IF
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'CPOEQUB', -INFO )
RETURN
END IF
*
* Quick return if possible.
*
IF( N.EQ.0 ) THEN
SCOND = ONE
AMAX = ZERO
RETURN
END IF
BASE = SLAMCH( 'B' )
TMP = -0.5 / LOG ( BASE )
*
* Find the minimum and maximum diagonal elements.
*
S( 1 ) = REAL( A( 1, 1 ) )
SMIN = S( 1 )
AMAX = S( 1 )
DO 10 I = 2, N
S( I ) = REAL( A( I, I ) )
SMIN = MIN( SMIN, S( I ) )
AMAX = MAX( AMAX, S( I ) )
10 CONTINUE
*
IF( SMIN.LE.ZERO ) THEN
*
* Find the first non-positive diagonal element and return.
*
DO 20 I = 1, N
IF( S( I ).LE.ZERO ) THEN
INFO = I
RETURN
END IF
20 CONTINUE
ELSE
*
* Set the scale factors to the reciprocals
* of the diagonal elements.
*
DO 30 I = 1, N
S( I ) = BASE ** INT( TMP * LOG( S( I ) ) )
30 CONTINUE
*
* Compute SCOND = min(S(I)) / max(S(I)).
*
SCOND = SQRT( SMIN ) / SQRT( AMAX )
END IF
*
RETURN
*
* End of CPOEQUB
*
END