You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
268 lines
7.6 KiB
268 lines
7.6 KiB
2 years ago
|
*> \brief \b CTPQRT
|
||
|
*
|
||
|
* =========== DOCUMENTATION ===========
|
||
|
*
|
||
|
* Online html documentation available at
|
||
|
* http://www.netlib.org/lapack/explore-html/
|
||
|
*
|
||
|
*> \htmlonly
|
||
|
*> Download CTPQRT + dependencies
|
||
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/ctpqrt.f">
|
||
|
*> [TGZ]</a>
|
||
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/ctpqrt.f">
|
||
|
*> [ZIP]</a>
|
||
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/ctpqrt.f">
|
||
|
*> [TXT]</a>
|
||
|
*> \endhtmlonly
|
||
|
*
|
||
|
* Definition:
|
||
|
* ===========
|
||
|
*
|
||
|
* SUBROUTINE CTPQRT( M, N, L, NB, A, LDA, B, LDB, T, LDT, WORK,
|
||
|
* INFO )
|
||
|
*
|
||
|
* .. Scalar Arguments ..
|
||
|
* INTEGER INFO, LDA, LDB, LDT, N, M, L, NB
|
||
|
* ..
|
||
|
* .. Array Arguments ..
|
||
|
* COMPLEX A( LDA, * ), B( LDB, * ), T( LDT, * ), WORK( * )
|
||
|
* ..
|
||
|
*
|
||
|
*
|
||
|
*> \par Purpose:
|
||
|
* =============
|
||
|
*>
|
||
|
*> \verbatim
|
||
|
*>
|
||
|
*> CTPQRT computes a blocked QR factorization of a complex
|
||
|
*> "triangular-pentagonal" matrix C, which is composed of a
|
||
|
*> triangular block A and pentagonal block B, using the compact
|
||
|
*> WY representation for Q.
|
||
|
*> \endverbatim
|
||
|
*
|
||
|
* Arguments:
|
||
|
* ==========
|
||
|
*
|
||
|
*> \param[in] M
|
||
|
*> \verbatim
|
||
|
*> M is INTEGER
|
||
|
*> The number of rows of the matrix B.
|
||
|
*> M >= 0.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] N
|
||
|
*> \verbatim
|
||
|
*> N is INTEGER
|
||
|
*> The number of columns of the matrix B, and the order of the
|
||
|
*> triangular matrix A.
|
||
|
*> N >= 0.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] L
|
||
|
*> \verbatim
|
||
|
*> L is INTEGER
|
||
|
*> The number of rows of the upper trapezoidal part of B.
|
||
|
*> MIN(M,N) >= L >= 0. See Further Details.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] NB
|
||
|
*> \verbatim
|
||
|
*> NB is INTEGER
|
||
|
*> The block size to be used in the blocked QR. N >= NB >= 1.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in,out] A
|
||
|
*> \verbatim
|
||
|
*> A is COMPLEX array, dimension (LDA,N)
|
||
|
*> On entry, the upper triangular N-by-N matrix A.
|
||
|
*> On exit, the elements on and above the diagonal of the array
|
||
|
*> contain the upper triangular matrix R.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] LDA
|
||
|
*> \verbatim
|
||
|
*> LDA is INTEGER
|
||
|
*> The leading dimension of the array A. LDA >= max(1,N).
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in,out] B
|
||
|
*> \verbatim
|
||
|
*> B is COMPLEX array, dimension (LDB,N)
|
||
|
*> On entry, the pentagonal M-by-N matrix B. The first M-L rows
|
||
|
*> are rectangular, and the last L rows are upper trapezoidal.
|
||
|
*> On exit, B contains the pentagonal matrix V. See Further Details.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] LDB
|
||
|
*> \verbatim
|
||
|
*> LDB is INTEGER
|
||
|
*> The leading dimension of the array B. LDB >= max(1,M).
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] T
|
||
|
*> \verbatim
|
||
|
*> T is COMPLEX array, dimension (LDT,N)
|
||
|
*> The upper triangular block reflectors stored in compact form
|
||
|
*> as a sequence of upper triangular blocks. See Further Details.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] LDT
|
||
|
*> \verbatim
|
||
|
*> LDT is INTEGER
|
||
|
*> The leading dimension of the array T. LDT >= NB.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] WORK
|
||
|
*> \verbatim
|
||
|
*> WORK is COMPLEX array, dimension (NB*N)
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] INFO
|
||
|
*> \verbatim
|
||
|
*> INFO is INTEGER
|
||
|
*> = 0: successful exit
|
||
|
*> < 0: if INFO = -i, the i-th argument had an illegal value
|
||
|
*> \endverbatim
|
||
|
*
|
||
|
* Authors:
|
||
|
* ========
|
||
|
*
|
||
|
*> \author Univ. of Tennessee
|
||
|
*> \author Univ. of California Berkeley
|
||
|
*> \author Univ. of Colorado Denver
|
||
|
*> \author NAG Ltd.
|
||
|
*
|
||
|
*> \ingroup complexOTHERcomputational
|
||
|
*
|
||
|
*> \par Further Details:
|
||
|
* =====================
|
||
|
*>
|
||
|
*> \verbatim
|
||
|
*>
|
||
|
*> The input matrix C is a (N+M)-by-N matrix
|
||
|
*>
|
||
|
*> C = [ A ]
|
||
|
*> [ B ]
|
||
|
*>
|
||
|
*> where A is an upper triangular N-by-N matrix, and B is M-by-N pentagonal
|
||
|
*> matrix consisting of a (M-L)-by-N rectangular matrix B1 on top of a L-by-N
|
||
|
*> upper trapezoidal matrix B2:
|
||
|
*>
|
||
|
*> B = [ B1 ] <- (M-L)-by-N rectangular
|
||
|
*> [ B2 ] <- L-by-N upper trapezoidal.
|
||
|
*>
|
||
|
*> The upper trapezoidal matrix B2 consists of the first L rows of a
|
||
|
*> N-by-N upper triangular matrix, where 0 <= L <= MIN(M,N). If L=0,
|
||
|
*> B is rectangular M-by-N; if M=L=N, B is upper triangular.
|
||
|
*>
|
||
|
*> The matrix W stores the elementary reflectors H(i) in the i-th column
|
||
|
*> below the diagonal (of A) in the (N+M)-by-N input matrix C
|
||
|
*>
|
||
|
*> C = [ A ] <- upper triangular N-by-N
|
||
|
*> [ B ] <- M-by-N pentagonal
|
||
|
*>
|
||
|
*> so that W can be represented as
|
||
|
*>
|
||
|
*> W = [ I ] <- identity, N-by-N
|
||
|
*> [ V ] <- M-by-N, same form as B.
|
||
|
*>
|
||
|
*> Thus, all of information needed for W is contained on exit in B, which
|
||
|
*> we call V above. Note that V has the same form as B; that is,
|
||
|
*>
|
||
|
*> V = [ V1 ] <- (M-L)-by-N rectangular
|
||
|
*> [ V2 ] <- L-by-N upper trapezoidal.
|
||
|
*>
|
||
|
*> The columns of V represent the vectors which define the H(i)'s.
|
||
|
*>
|
||
|
*> The number of blocks is B = ceiling(N/NB), where each
|
||
|
*> block is of order NB except for the last block, which is of order
|
||
|
*> IB = N - (B-1)*NB. For each of the B blocks, a upper triangular block
|
||
|
*> reflector factor is computed: T1, T2, ..., TB. The NB-by-NB (and IB-by-IB
|
||
|
*> for the last block) T's are stored in the NB-by-N matrix T as
|
||
|
*>
|
||
|
*> T = [T1 T2 ... TB].
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
* =====================================================================
|
||
|
SUBROUTINE CTPQRT( M, N, L, NB, A, LDA, B, LDB, T, LDT, WORK,
|
||
|
$ INFO )
|
||
|
*
|
||
|
* -- LAPACK computational routine --
|
||
|
* -- LAPACK is a software package provided by Univ. of Tennessee, --
|
||
|
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
||
|
*
|
||
|
* .. Scalar Arguments ..
|
||
|
INTEGER INFO, LDA, LDB, LDT, N, M, L, NB
|
||
|
* ..
|
||
|
* .. Array Arguments ..
|
||
|
COMPLEX A( LDA, * ), B( LDB, * ), T( LDT, * ), WORK( * )
|
||
|
* ..
|
||
|
*
|
||
|
* =====================================================================
|
||
|
*
|
||
|
* ..
|
||
|
* .. Local Scalars ..
|
||
|
INTEGER I, IB, LB, MB, IINFO
|
||
|
* ..
|
||
|
* .. External Subroutines ..
|
||
|
EXTERNAL CTPQRT2, CTPRFB, XERBLA
|
||
|
* ..
|
||
|
* .. Executable Statements ..
|
||
|
*
|
||
|
* Test the input arguments
|
||
|
*
|
||
|
INFO = 0
|
||
|
IF( M.LT.0 ) THEN
|
||
|
INFO = -1
|
||
|
ELSE IF( N.LT.0 ) THEN
|
||
|
INFO = -2
|
||
|
ELSE IF( L.LT.0 .OR. (L.GT.MIN(M,N) .AND. MIN(M,N).GE.0)) THEN
|
||
|
INFO = -3
|
||
|
ELSE IF( NB.LT.1 .OR. (NB.GT.N .AND. N.GT.0)) THEN
|
||
|
INFO = -4
|
||
|
ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
|
||
|
INFO = -6
|
||
|
ELSE IF( LDB.LT.MAX( 1, M ) ) THEN
|
||
|
INFO = -8
|
||
|
ELSE IF( LDT.LT.NB ) THEN
|
||
|
INFO = -10
|
||
|
END IF
|
||
|
IF( INFO.NE.0 ) THEN
|
||
|
CALL XERBLA( 'CTPQRT', -INFO )
|
||
|
RETURN
|
||
|
END IF
|
||
|
*
|
||
|
* Quick return if possible
|
||
|
*
|
||
|
IF( M.EQ.0 .OR. N.EQ.0 ) RETURN
|
||
|
*
|
||
|
DO I = 1, N, NB
|
||
|
*
|
||
|
* Compute the QR factorization of the current block
|
||
|
*
|
||
|
IB = MIN( N-I+1, NB )
|
||
|
MB = MIN( M-L+I+IB-1, M )
|
||
|
IF( I.GE.L ) THEN
|
||
|
LB = 0
|
||
|
ELSE
|
||
|
LB = MB-M+L-I+1
|
||
|
END IF
|
||
|
*
|
||
|
CALL CTPQRT2( MB, IB, LB, A(I,I), LDA, B( 1, I ), LDB,
|
||
|
$ T(1, I ), LDT, IINFO )
|
||
|
*
|
||
|
* Update by applying H**H to B(:,I+IB:N) from the left
|
||
|
*
|
||
|
IF( I+IB.LE.N ) THEN
|
||
|
CALL CTPRFB( 'L', 'C', 'F', 'C', MB, N-I-IB+1, IB, LB,
|
||
|
$ B( 1, I ), LDB, T( 1, I ), LDT,
|
||
|
$ A( I, I+IB ), LDA, B( 1, I+IB ), LDB,
|
||
|
$ WORK, IB )
|
||
|
END IF
|
||
|
END DO
|
||
|
RETURN
|
||
|
*
|
||
|
* End of CTPQRT
|
||
|
*
|
||
|
END
|