You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
812 lines
25 KiB
812 lines
25 KiB
2 years ago
|
*> \brief \b CTPRFB applies a complex "triangular-pentagonal" block reflector to a complex matrix, which is composed of two blocks.
|
||
|
*
|
||
|
* =========== DOCUMENTATION ===========
|
||
|
*
|
||
|
* Online html documentation available at
|
||
|
* http://www.netlib.org/lapack/explore-html/
|
||
|
*
|
||
|
*> \htmlonly
|
||
|
*> Download CTPRFB + dependencies
|
||
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/ctprfb.f">
|
||
|
*> [TGZ]</a>
|
||
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/ctprfb.f">
|
||
|
*> [ZIP]</a>
|
||
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/ctprfb.f">
|
||
|
*> [TXT]</a>
|
||
|
*> \endhtmlonly
|
||
|
*
|
||
|
* Definition:
|
||
|
* ===========
|
||
|
*
|
||
|
* SUBROUTINE CTPRFB( SIDE, TRANS, DIRECT, STOREV, M, N, K, L,
|
||
|
* V, LDV, T, LDT, A, LDA, B, LDB, WORK, LDWORK )
|
||
|
*
|
||
|
* .. Scalar Arguments ..
|
||
|
* CHARACTER DIRECT, SIDE, STOREV, TRANS
|
||
|
* INTEGER K, L, LDA, LDB, LDT, LDV, LDWORK, M, N
|
||
|
* ..
|
||
|
* .. Array Arguments ..
|
||
|
* COMPLEX A( LDA, * ), B( LDB, * ), T( LDT, * ),
|
||
|
* $ V( LDV, * ), WORK( LDWORK, * )
|
||
|
* ..
|
||
|
*
|
||
|
*
|
||
|
*> \par Purpose:
|
||
|
* =============
|
||
|
*>
|
||
|
*> \verbatim
|
||
|
*>
|
||
|
*> CTPRFB applies a complex "triangular-pentagonal" block reflector H or its
|
||
|
*> conjugate transpose H**H to a complex matrix C, which is composed of two
|
||
|
*> blocks A and B, either from the left or right.
|
||
|
*>
|
||
|
*> \endverbatim
|
||
|
*
|
||
|
* Arguments:
|
||
|
* ==========
|
||
|
*
|
||
|
*> \param[in] SIDE
|
||
|
*> \verbatim
|
||
|
*> SIDE is CHARACTER*1
|
||
|
*> = 'L': apply H or H**H from the Left
|
||
|
*> = 'R': apply H or H**H from the Right
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] TRANS
|
||
|
*> \verbatim
|
||
|
*> TRANS is CHARACTER*1
|
||
|
*> = 'N': apply H (No transpose)
|
||
|
*> = 'C': apply H**H (Conjugate transpose)
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] DIRECT
|
||
|
*> \verbatim
|
||
|
*> DIRECT is CHARACTER*1
|
||
|
*> Indicates how H is formed from a product of elementary
|
||
|
*> reflectors
|
||
|
*> = 'F': H = H(1) H(2) . . . H(k) (Forward)
|
||
|
*> = 'B': H = H(k) . . . H(2) H(1) (Backward)
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] STOREV
|
||
|
*> \verbatim
|
||
|
*> STOREV is CHARACTER*1
|
||
|
*> Indicates how the vectors which define the elementary
|
||
|
*> reflectors are stored:
|
||
|
*> = 'C': Columns
|
||
|
*> = 'R': Rows
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] M
|
||
|
*> \verbatim
|
||
|
*> M is INTEGER
|
||
|
*> The number of rows of the matrix B.
|
||
|
*> M >= 0.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] N
|
||
|
*> \verbatim
|
||
|
*> N is INTEGER
|
||
|
*> The number of columns of the matrix B.
|
||
|
*> N >= 0.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] K
|
||
|
*> \verbatim
|
||
|
*> K is INTEGER
|
||
|
*> The order of the matrix T, i.e. the number of elementary
|
||
|
*> reflectors whose product defines the block reflector.
|
||
|
*> K >= 0.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] L
|
||
|
*> \verbatim
|
||
|
*> L is INTEGER
|
||
|
*> The order of the trapezoidal part of V.
|
||
|
*> K >= L >= 0. See Further Details.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] V
|
||
|
*> \verbatim
|
||
|
*> V is COMPLEX array, dimension
|
||
|
*> (LDV,K) if STOREV = 'C'
|
||
|
*> (LDV,M) if STOREV = 'R' and SIDE = 'L'
|
||
|
*> (LDV,N) if STOREV = 'R' and SIDE = 'R'
|
||
|
*> The pentagonal matrix V, which contains the elementary reflectors
|
||
|
*> H(1), H(2), ..., H(K). See Further Details.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] LDV
|
||
|
*> \verbatim
|
||
|
*> LDV is INTEGER
|
||
|
*> The leading dimension of the array V.
|
||
|
*> If STOREV = 'C' and SIDE = 'L', LDV >= max(1,M);
|
||
|
*> if STOREV = 'C' and SIDE = 'R', LDV >= max(1,N);
|
||
|
*> if STOREV = 'R', LDV >= K.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] T
|
||
|
*> \verbatim
|
||
|
*> T is COMPLEX array, dimension (LDT,K)
|
||
|
*> The triangular K-by-K matrix T in the representation of the
|
||
|
*> block reflector.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] LDT
|
||
|
*> \verbatim
|
||
|
*> LDT is INTEGER
|
||
|
*> The leading dimension of the array T.
|
||
|
*> LDT >= K.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in,out] A
|
||
|
*> \verbatim
|
||
|
*> A is COMPLEX array, dimension
|
||
|
*> (LDA,N) if SIDE = 'L' or (LDA,K) if SIDE = 'R'
|
||
|
*> On entry, the K-by-N or M-by-K matrix A.
|
||
|
*> On exit, A is overwritten by the corresponding block of
|
||
|
*> H*C or H**H*C or C*H or C*H**H. See Further Details.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] LDA
|
||
|
*> \verbatim
|
||
|
*> LDA is INTEGER
|
||
|
*> The leading dimension of the array A.
|
||
|
*> If SIDE = 'L', LDA >= max(1,K);
|
||
|
*> If SIDE = 'R', LDA >= max(1,M).
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in,out] B
|
||
|
*> \verbatim
|
||
|
*> B is COMPLEX array, dimension (LDB,N)
|
||
|
*> On entry, the M-by-N matrix B.
|
||
|
*> On exit, B is overwritten by the corresponding block of
|
||
|
*> H*C or H**H*C or C*H or C*H**H. See Further Details.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] LDB
|
||
|
*> \verbatim
|
||
|
*> LDB is INTEGER
|
||
|
*> The leading dimension of the array B.
|
||
|
*> LDB >= max(1,M).
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] WORK
|
||
|
*> \verbatim
|
||
|
*> WORK is COMPLEX array, dimension
|
||
|
*> (LDWORK,N) if SIDE = 'L',
|
||
|
*> (LDWORK,K) if SIDE = 'R'.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] LDWORK
|
||
|
*> \verbatim
|
||
|
*> LDWORK is INTEGER
|
||
|
*> The leading dimension of the array WORK.
|
||
|
*> If SIDE = 'L', LDWORK >= K;
|
||
|
*> if SIDE = 'R', LDWORK >= M.
|
||
|
*> \endverbatim
|
||
|
*
|
||
|
* Authors:
|
||
|
* ========
|
||
|
*
|
||
|
*> \author Univ. of Tennessee
|
||
|
*> \author Univ. of California Berkeley
|
||
|
*> \author Univ. of Colorado Denver
|
||
|
*> \author NAG Ltd.
|
||
|
*
|
||
|
*> \ingroup complexOTHERauxiliary
|
||
|
*
|
||
|
*> \par Further Details:
|
||
|
* =====================
|
||
|
*>
|
||
|
*> \verbatim
|
||
|
*>
|
||
|
*> The matrix C is a composite matrix formed from blocks A and B.
|
||
|
*> The block B is of size M-by-N; if SIDE = 'R', A is of size M-by-K,
|
||
|
*> and if SIDE = 'L', A is of size K-by-N.
|
||
|
*>
|
||
|
*> If SIDE = 'R' and DIRECT = 'F', C = [A B].
|
||
|
*>
|
||
|
*> If SIDE = 'L' and DIRECT = 'F', C = [A]
|
||
|
*> [B].
|
||
|
*>
|
||
|
*> If SIDE = 'R' and DIRECT = 'B', C = [B A].
|
||
|
*>
|
||
|
*> If SIDE = 'L' and DIRECT = 'B', C = [B]
|
||
|
*> [A].
|
||
|
*>
|
||
|
*> The pentagonal matrix V is composed of a rectangular block V1 and a
|
||
|
*> trapezoidal block V2. The size of the trapezoidal block is determined by
|
||
|
*> the parameter L, where 0<=L<=K. If L=K, the V2 block of V is triangular;
|
||
|
*> if L=0, there is no trapezoidal block, thus V = V1 is rectangular.
|
||
|
*>
|
||
|
*> If DIRECT = 'F' and STOREV = 'C': V = [V1]
|
||
|
*> [V2]
|
||
|
*> - V2 is upper trapezoidal (first L rows of K-by-K upper triangular)
|
||
|
*>
|
||
|
*> If DIRECT = 'F' and STOREV = 'R': V = [V1 V2]
|
||
|
*>
|
||
|
*> - V2 is lower trapezoidal (first L columns of K-by-K lower triangular)
|
||
|
*>
|
||
|
*> If DIRECT = 'B' and STOREV = 'C': V = [V2]
|
||
|
*> [V1]
|
||
|
*> - V2 is lower trapezoidal (last L rows of K-by-K lower triangular)
|
||
|
*>
|
||
|
*> If DIRECT = 'B' and STOREV = 'R': V = [V2 V1]
|
||
|
*>
|
||
|
*> - V2 is upper trapezoidal (last L columns of K-by-K upper triangular)
|
||
|
*>
|
||
|
*> If STOREV = 'C' and SIDE = 'L', V is M-by-K with V2 L-by-K.
|
||
|
*>
|
||
|
*> If STOREV = 'C' and SIDE = 'R', V is N-by-K with V2 L-by-K.
|
||
|
*>
|
||
|
*> If STOREV = 'R' and SIDE = 'L', V is K-by-M with V2 K-by-L.
|
||
|
*>
|
||
|
*> If STOREV = 'R' and SIDE = 'R', V is K-by-N with V2 K-by-L.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
* =====================================================================
|
||
|
SUBROUTINE CTPRFB( SIDE, TRANS, DIRECT, STOREV, M, N, K, L,
|
||
|
$ V, LDV, T, LDT, A, LDA, B, LDB, WORK, LDWORK )
|
||
|
*
|
||
|
* -- LAPACK auxiliary routine --
|
||
|
* -- LAPACK is a software package provided by Univ. of Tennessee, --
|
||
|
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
||
|
*
|
||
|
* .. Scalar Arguments ..
|
||
|
CHARACTER DIRECT, SIDE, STOREV, TRANS
|
||
|
INTEGER K, L, LDA, LDB, LDT, LDV, LDWORK, M, N
|
||
|
* ..
|
||
|
* .. Array Arguments ..
|
||
|
COMPLEX A( LDA, * ), B( LDB, * ), T( LDT, * ),
|
||
|
$ V( LDV, * ), WORK( LDWORK, * )
|
||
|
* ..
|
||
|
*
|
||
|
* ==========================================================================
|
||
|
*
|
||
|
* .. Parameters ..
|
||
|
COMPLEX ONE, ZERO
|
||
|
PARAMETER ( ONE = (1.0,0.0), ZERO = (0.0,0.0) )
|
||
|
* ..
|
||
|
* .. Local Scalars ..
|
||
|
INTEGER I, J, MP, NP, KP
|
||
|
LOGICAL LEFT, FORWARD, COLUMN, RIGHT, BACKWARD, ROW
|
||
|
* ..
|
||
|
* .. External Functions ..
|
||
|
LOGICAL LSAME
|
||
|
EXTERNAL LSAME
|
||
|
* ..
|
||
|
* .. External Subroutines ..
|
||
|
EXTERNAL CGEMM, CTRMM
|
||
|
* ..
|
||
|
* .. Intrinsic Functions ..
|
||
|
INTRINSIC CONJG
|
||
|
* ..
|
||
|
* .. Executable Statements ..
|
||
|
*
|
||
|
* Quick return if possible
|
||
|
*
|
||
|
IF( M.LE.0 .OR. N.LE.0 .OR. K.LE.0 .OR. L.LT.0 ) RETURN
|
||
|
*
|
||
|
IF( LSAME( STOREV, 'C' ) ) THEN
|
||
|
COLUMN = .TRUE.
|
||
|
ROW = .FALSE.
|
||
|
ELSE IF ( LSAME( STOREV, 'R' ) ) THEN
|
||
|
COLUMN = .FALSE.
|
||
|
ROW = .TRUE.
|
||
|
ELSE
|
||
|
COLUMN = .FALSE.
|
||
|
ROW = .FALSE.
|
||
|
END IF
|
||
|
*
|
||
|
IF( LSAME( SIDE, 'L' ) ) THEN
|
||
|
LEFT = .TRUE.
|
||
|
RIGHT = .FALSE.
|
||
|
ELSE IF( LSAME( SIDE, 'R' ) ) THEN
|
||
|
LEFT = .FALSE.
|
||
|
RIGHT = .TRUE.
|
||
|
ELSE
|
||
|
LEFT = .FALSE.
|
||
|
RIGHT = .FALSE.
|
||
|
END IF
|
||
|
*
|
||
|
IF( LSAME( DIRECT, 'F' ) ) THEN
|
||
|
FORWARD = .TRUE.
|
||
|
BACKWARD = .FALSE.
|
||
|
ELSE IF( LSAME( DIRECT, 'B' ) ) THEN
|
||
|
FORWARD = .FALSE.
|
||
|
BACKWARD = .TRUE.
|
||
|
ELSE
|
||
|
FORWARD = .FALSE.
|
||
|
BACKWARD = .FALSE.
|
||
|
END IF
|
||
|
*
|
||
|
* ---------------------------------------------------------------------------
|
||
|
*
|
||
|
IF( COLUMN .AND. FORWARD .AND. LEFT ) THEN
|
||
|
*
|
||
|
* ---------------------------------------------------------------------------
|
||
|
*
|
||
|
* Let W = [ I ] (K-by-K)
|
||
|
* [ V ] (M-by-K)
|
||
|
*
|
||
|
* Form H C or H**H C where C = [ A ] (K-by-N)
|
||
|
* [ B ] (M-by-N)
|
||
|
*
|
||
|
* H = I - W T W**H or H**H = I - W T**H W**H
|
||
|
*
|
||
|
* A = A - T (A + V**H B) or A = A - T**H (A + V**H B)
|
||
|
* B = B - V T (A + V**H B) or B = B - V T**H (A + V**H B)
|
||
|
*
|
||
|
* ---------------------------------------------------------------------------
|
||
|
*
|
||
|
MP = MIN( M-L+1, M )
|
||
|
KP = MIN( L+1, K )
|
||
|
*
|
||
|
DO J = 1, N
|
||
|
DO I = 1, L
|
||
|
WORK( I, J ) = B( M-L+I, J )
|
||
|
END DO
|
||
|
END DO
|
||
|
CALL CTRMM( 'L', 'U', 'C', 'N', L, N, ONE, V( MP, 1 ), LDV,
|
||
|
$ WORK, LDWORK )
|
||
|
CALL CGEMM( 'C', 'N', L, N, M-L, ONE, V, LDV, B, LDB,
|
||
|
$ ONE, WORK, LDWORK )
|
||
|
CALL CGEMM( 'C', 'N', K-L, N, M, ONE, V( 1, KP ), LDV,
|
||
|
$ B, LDB, ZERO, WORK( KP, 1 ), LDWORK )
|
||
|
*
|
||
|
DO J = 1, N
|
||
|
DO I = 1, K
|
||
|
WORK( I, J ) = WORK( I, J ) + A( I, J )
|
||
|
END DO
|
||
|
END DO
|
||
|
*
|
||
|
CALL CTRMM( 'L', 'U', TRANS, 'N', K, N, ONE, T, LDT,
|
||
|
$ WORK, LDWORK )
|
||
|
*
|
||
|
DO J = 1, N
|
||
|
DO I = 1, K
|
||
|
A( I, J ) = A( I, J ) - WORK( I, J )
|
||
|
END DO
|
||
|
END DO
|
||
|
*
|
||
|
CALL CGEMM( 'N', 'N', M-L, N, K, -ONE, V, LDV, WORK, LDWORK,
|
||
|
$ ONE, B, LDB )
|
||
|
CALL CGEMM( 'N', 'N', L, N, K-L, -ONE, V( MP, KP ), LDV,
|
||
|
$ WORK( KP, 1 ), LDWORK, ONE, B( MP, 1 ), LDB )
|
||
|
CALL CTRMM( 'L', 'U', 'N', 'N', L, N, ONE, V( MP, 1 ), LDV,
|
||
|
$ WORK, LDWORK )
|
||
|
DO J = 1, N
|
||
|
DO I = 1, L
|
||
|
B( M-L+I, J ) = B( M-L+I, J ) - WORK( I, J )
|
||
|
END DO
|
||
|
END DO
|
||
|
*
|
||
|
* ---------------------------------------------------------------------------
|
||
|
*
|
||
|
ELSE IF( COLUMN .AND. FORWARD .AND. RIGHT ) THEN
|
||
|
*
|
||
|
* ---------------------------------------------------------------------------
|
||
|
*
|
||
|
* Let W = [ I ] (K-by-K)
|
||
|
* [ V ] (N-by-K)
|
||
|
*
|
||
|
* Form C H or C H**H where C = [ A B ] (A is M-by-K, B is M-by-N)
|
||
|
*
|
||
|
* H = I - W T W**H or H**H = I - W T**H W**H
|
||
|
*
|
||
|
* A = A - (A + B V) T or A = A - (A + B V) T**H
|
||
|
* B = B - (A + B V) T V**H or B = B - (A + B V) T**H V**H
|
||
|
*
|
||
|
* ---------------------------------------------------------------------------
|
||
|
*
|
||
|
NP = MIN( N-L+1, N )
|
||
|
KP = MIN( L+1, K )
|
||
|
*
|
||
|
DO J = 1, L
|
||
|
DO I = 1, M
|
||
|
WORK( I, J ) = B( I, N-L+J )
|
||
|
END DO
|
||
|
END DO
|
||
|
CALL CTRMM( 'R', 'U', 'N', 'N', M, L, ONE, V( NP, 1 ), LDV,
|
||
|
$ WORK, LDWORK )
|
||
|
CALL CGEMM( 'N', 'N', M, L, N-L, ONE, B, LDB,
|
||
|
$ V, LDV, ONE, WORK, LDWORK )
|
||
|
CALL CGEMM( 'N', 'N', M, K-L, N, ONE, B, LDB,
|
||
|
$ V( 1, KP ), LDV, ZERO, WORK( 1, KP ), LDWORK )
|
||
|
*
|
||
|
DO J = 1, K
|
||
|
DO I = 1, M
|
||
|
WORK( I, J ) = WORK( I, J ) + A( I, J )
|
||
|
END DO
|
||
|
END DO
|
||
|
*
|
||
|
CALL CTRMM( 'R', 'U', TRANS, 'N', M, K, ONE, T, LDT,
|
||
|
$ WORK, LDWORK )
|
||
|
*
|
||
|
DO J = 1, K
|
||
|
DO I = 1, M
|
||
|
A( I, J ) = A( I, J ) - WORK( I, J )
|
||
|
END DO
|
||
|
END DO
|
||
|
*
|
||
|
CALL CGEMM( 'N', 'C', M, N-L, K, -ONE, WORK, LDWORK,
|
||
|
$ V, LDV, ONE, B, LDB )
|
||
|
CALL CGEMM( 'N', 'C', M, L, K-L, -ONE, WORK( 1, KP ), LDWORK,
|
||
|
$ V( NP, KP ), LDV, ONE, B( 1, NP ), LDB )
|
||
|
CALL CTRMM( 'R', 'U', 'C', 'N', M, L, ONE, V( NP, 1 ), LDV,
|
||
|
$ WORK, LDWORK )
|
||
|
DO J = 1, L
|
||
|
DO I = 1, M
|
||
|
B( I, N-L+J ) = B( I, N-L+J ) - WORK( I, J )
|
||
|
END DO
|
||
|
END DO
|
||
|
*
|
||
|
* ---------------------------------------------------------------------------
|
||
|
*
|
||
|
ELSE IF( COLUMN .AND. BACKWARD .AND. LEFT ) THEN
|
||
|
*
|
||
|
* ---------------------------------------------------------------------------
|
||
|
*
|
||
|
* Let W = [ V ] (M-by-K)
|
||
|
* [ I ] (K-by-K)
|
||
|
*
|
||
|
* Form H C or H**H C where C = [ B ] (M-by-N)
|
||
|
* [ A ] (K-by-N)
|
||
|
*
|
||
|
* H = I - W T W**H or H**H = I - W T**H W**H
|
||
|
*
|
||
|
* A = A - T (A + V**H B) or A = A - T**H (A + V**H B)
|
||
|
* B = B - V T (A + V**H B) or B = B - V T**H (A + V**H B)
|
||
|
*
|
||
|
* ---------------------------------------------------------------------------
|
||
|
*
|
||
|
MP = MIN( L+1, M )
|
||
|
KP = MIN( K-L+1, K )
|
||
|
*
|
||
|
DO J = 1, N
|
||
|
DO I = 1, L
|
||
|
WORK( K-L+I, J ) = B( I, J )
|
||
|
END DO
|
||
|
END DO
|
||
|
*
|
||
|
CALL CTRMM( 'L', 'L', 'C', 'N', L, N, ONE, V( 1, KP ), LDV,
|
||
|
$ WORK( KP, 1 ), LDWORK )
|
||
|
CALL CGEMM( 'C', 'N', L, N, M-L, ONE, V( MP, KP ), LDV,
|
||
|
$ B( MP, 1 ), LDB, ONE, WORK( KP, 1 ), LDWORK )
|
||
|
CALL CGEMM( 'C', 'N', K-L, N, M, ONE, V, LDV,
|
||
|
$ B, LDB, ZERO, WORK, LDWORK )
|
||
|
*
|
||
|
DO J = 1, N
|
||
|
DO I = 1, K
|
||
|
WORK( I, J ) = WORK( I, J ) + A( I, J )
|
||
|
END DO
|
||
|
END DO
|
||
|
*
|
||
|
CALL CTRMM( 'L', 'L', TRANS, 'N', K, N, ONE, T, LDT,
|
||
|
$ WORK, LDWORK )
|
||
|
*
|
||
|
DO J = 1, N
|
||
|
DO I = 1, K
|
||
|
A( I, J ) = A( I, J ) - WORK( I, J )
|
||
|
END DO
|
||
|
END DO
|
||
|
*
|
||
|
CALL CGEMM( 'N', 'N', M-L, N, K, -ONE, V( MP, 1 ), LDV,
|
||
|
$ WORK, LDWORK, ONE, B( MP, 1 ), LDB )
|
||
|
CALL CGEMM( 'N', 'N', L, N, K-L, -ONE, V, LDV,
|
||
|
$ WORK, LDWORK, ONE, B, LDB )
|
||
|
CALL CTRMM( 'L', 'L', 'N', 'N', L, N, ONE, V( 1, KP ), LDV,
|
||
|
$ WORK( KP, 1 ), LDWORK )
|
||
|
DO J = 1, N
|
||
|
DO I = 1, L
|
||
|
B( I, J ) = B( I, J ) - WORK( K-L+I, J )
|
||
|
END DO
|
||
|
END DO
|
||
|
*
|
||
|
* ---------------------------------------------------------------------------
|
||
|
*
|
||
|
ELSE IF( COLUMN .AND. BACKWARD .AND. RIGHT ) THEN
|
||
|
*
|
||
|
* ---------------------------------------------------------------------------
|
||
|
*
|
||
|
* Let W = [ V ] (N-by-K)
|
||
|
* [ I ] (K-by-K)
|
||
|
*
|
||
|
* Form C H or C H**H where C = [ B A ] (B is M-by-N, A is M-by-K)
|
||
|
*
|
||
|
* H = I - W T W**H or H**H = I - W T**H W**H
|
||
|
*
|
||
|
* A = A - (A + B V) T or A = A - (A + B V) T**H
|
||
|
* B = B - (A + B V) T V**H or B = B - (A + B V) T**H V**H
|
||
|
*
|
||
|
* ---------------------------------------------------------------------------
|
||
|
*
|
||
|
NP = MIN( L+1, N )
|
||
|
KP = MIN( K-L+1, K )
|
||
|
*
|
||
|
DO J = 1, L
|
||
|
DO I = 1, M
|
||
|
WORK( I, K-L+J ) = B( I, J )
|
||
|
END DO
|
||
|
END DO
|
||
|
CALL CTRMM( 'R', 'L', 'N', 'N', M, L, ONE, V( 1, KP ), LDV,
|
||
|
$ WORK( 1, KP ), LDWORK )
|
||
|
CALL CGEMM( 'N', 'N', M, L, N-L, ONE, B( 1, NP ), LDB,
|
||
|
$ V( NP, KP ), LDV, ONE, WORK( 1, KP ), LDWORK )
|
||
|
CALL CGEMM( 'N', 'N', M, K-L, N, ONE, B, LDB,
|
||
|
$ V, LDV, ZERO, WORK, LDWORK )
|
||
|
*
|
||
|
DO J = 1, K
|
||
|
DO I = 1, M
|
||
|
WORK( I, J ) = WORK( I, J ) + A( I, J )
|
||
|
END DO
|
||
|
END DO
|
||
|
*
|
||
|
CALL CTRMM( 'R', 'L', TRANS, 'N', M, K, ONE, T, LDT,
|
||
|
$ WORK, LDWORK )
|
||
|
*
|
||
|
DO J = 1, K
|
||
|
DO I = 1, M
|
||
|
A( I, J ) = A( I, J ) - WORK( I, J )
|
||
|
END DO
|
||
|
END DO
|
||
|
*
|
||
|
CALL CGEMM( 'N', 'C', M, N-L, K, -ONE, WORK, LDWORK,
|
||
|
$ V( NP, 1 ), LDV, ONE, B( 1, NP ), LDB )
|
||
|
CALL CGEMM( 'N', 'C', M, L, K-L, -ONE, WORK, LDWORK,
|
||
|
$ V, LDV, ONE, B, LDB )
|
||
|
CALL CTRMM( 'R', 'L', 'C', 'N', M, L, ONE, V( 1, KP ), LDV,
|
||
|
$ WORK( 1, KP ), LDWORK )
|
||
|
DO J = 1, L
|
||
|
DO I = 1, M
|
||
|
B( I, J ) = B( I, J ) - WORK( I, K-L+J )
|
||
|
END DO
|
||
|
END DO
|
||
|
*
|
||
|
* ---------------------------------------------------------------------------
|
||
|
*
|
||
|
ELSE IF( ROW .AND. FORWARD .AND. LEFT ) THEN
|
||
|
*
|
||
|
* ---------------------------------------------------------------------------
|
||
|
*
|
||
|
* Let W = [ I V ] ( I is K-by-K, V is K-by-M )
|
||
|
*
|
||
|
* Form H C or H**H C where C = [ A ] (K-by-N)
|
||
|
* [ B ] (M-by-N)
|
||
|
*
|
||
|
* H = I - W**H T W or H**H = I - W**H T**H W
|
||
|
*
|
||
|
* A = A - T (A + V B) or A = A - T**H (A + V B)
|
||
|
* B = B - V**H T (A + V B) or B = B - V**H T**H (A + V B)
|
||
|
*
|
||
|
* ---------------------------------------------------------------------------
|
||
|
*
|
||
|
MP = MIN( M-L+1, M )
|
||
|
KP = MIN( L+1, K )
|
||
|
*
|
||
|
DO J = 1, N
|
||
|
DO I = 1, L
|
||
|
WORK( I, J ) = B( M-L+I, J )
|
||
|
END DO
|
||
|
END DO
|
||
|
CALL CTRMM( 'L', 'L', 'N', 'N', L, N, ONE, V( 1, MP ), LDV,
|
||
|
$ WORK, LDB )
|
||
|
CALL CGEMM( 'N', 'N', L, N, M-L, ONE, V, LDV,B, LDB,
|
||
|
$ ONE, WORK, LDWORK )
|
||
|
CALL CGEMM( 'N', 'N', K-L, N, M, ONE, V( KP, 1 ), LDV,
|
||
|
$ B, LDB, ZERO, WORK( KP, 1 ), LDWORK )
|
||
|
*
|
||
|
DO J = 1, N
|
||
|
DO I = 1, K
|
||
|
WORK( I, J ) = WORK( I, J ) + A( I, J )
|
||
|
END DO
|
||
|
END DO
|
||
|
*
|
||
|
CALL CTRMM( 'L', 'U', TRANS, 'N', K, N, ONE, T, LDT,
|
||
|
$ WORK, LDWORK )
|
||
|
*
|
||
|
DO J = 1, N
|
||
|
DO I = 1, K
|
||
|
A( I, J ) = A( I, J ) - WORK( I, J )
|
||
|
END DO
|
||
|
END DO
|
||
|
*
|
||
|
CALL CGEMM( 'C', 'N', M-L, N, K, -ONE, V, LDV, WORK, LDWORK,
|
||
|
$ ONE, B, LDB )
|
||
|
CALL CGEMM( 'C', 'N', L, N, K-L, -ONE, V( KP, MP ), LDV,
|
||
|
$ WORK( KP, 1 ), LDWORK, ONE, B( MP, 1 ), LDB )
|
||
|
CALL CTRMM( 'L', 'L', 'C', 'N', L, N, ONE, V( 1, MP ), LDV,
|
||
|
$ WORK, LDWORK )
|
||
|
DO J = 1, N
|
||
|
DO I = 1, L
|
||
|
B( M-L+I, J ) = B( M-L+I, J ) - WORK( I, J )
|
||
|
END DO
|
||
|
END DO
|
||
|
*
|
||
|
* ---------------------------------------------------------------------------
|
||
|
*
|
||
|
ELSE IF( ROW .AND. FORWARD .AND. RIGHT ) THEN
|
||
|
*
|
||
|
* ---------------------------------------------------------------------------
|
||
|
*
|
||
|
* Let W = [ I V ] ( I is K-by-K, V is K-by-N )
|
||
|
*
|
||
|
* Form C H or C H**H where C = [ A B ] (A is M-by-K, B is M-by-N)
|
||
|
*
|
||
|
* H = I - W**H T W or H**H = I - W**H T**H W
|
||
|
*
|
||
|
* A = A - (A + B V**H) T or A = A - (A + B V**H) T**H
|
||
|
* B = B - (A + B V**H) T V or B = B - (A + B V**H) T**H V
|
||
|
*
|
||
|
* ---------------------------------------------------------------------------
|
||
|
*
|
||
|
NP = MIN( N-L+1, N )
|
||
|
KP = MIN( L+1, K )
|
||
|
*
|
||
|
DO J = 1, L
|
||
|
DO I = 1, M
|
||
|
WORK( I, J ) = B( I, N-L+J )
|
||
|
END DO
|
||
|
END DO
|
||
|
CALL CTRMM( 'R', 'L', 'C', 'N', M, L, ONE, V( 1, NP ), LDV,
|
||
|
$ WORK, LDWORK )
|
||
|
CALL CGEMM( 'N', 'C', M, L, N-L, ONE, B, LDB, V, LDV,
|
||
|
$ ONE, WORK, LDWORK )
|
||
|
CALL CGEMM( 'N', 'C', M, K-L, N, ONE, B, LDB,
|
||
|
$ V( KP, 1 ), LDV, ZERO, WORK( 1, KP ), LDWORK )
|
||
|
*
|
||
|
DO J = 1, K
|
||
|
DO I = 1, M
|
||
|
WORK( I, J ) = WORK( I, J ) + A( I, J )
|
||
|
END DO
|
||
|
END DO
|
||
|
*
|
||
|
CALL CTRMM( 'R', 'U', TRANS, 'N', M, K, ONE, T, LDT,
|
||
|
$ WORK, LDWORK )
|
||
|
*
|
||
|
DO J = 1, K
|
||
|
DO I = 1, M
|
||
|
A( I, J ) = A( I, J ) - WORK( I, J )
|
||
|
END DO
|
||
|
END DO
|
||
|
*
|
||
|
CALL CGEMM( 'N', 'N', M, N-L, K, -ONE, WORK, LDWORK,
|
||
|
$ V, LDV, ONE, B, LDB )
|
||
|
CALL CGEMM( 'N', 'N', M, L, K-L, -ONE, WORK( 1, KP ), LDWORK,
|
||
|
$ V( KP, NP ), LDV, ONE, B( 1, NP ), LDB )
|
||
|
CALL CTRMM( 'R', 'L', 'N', 'N', M, L, ONE, V( 1, NP ), LDV,
|
||
|
$ WORK, LDWORK )
|
||
|
DO J = 1, L
|
||
|
DO I = 1, M
|
||
|
B( I, N-L+J ) = B( I, N-L+J ) - WORK( I, J )
|
||
|
END DO
|
||
|
END DO
|
||
|
*
|
||
|
* ---------------------------------------------------------------------------
|
||
|
*
|
||
|
ELSE IF( ROW .AND. BACKWARD .AND. LEFT ) THEN
|
||
|
*
|
||
|
* ---------------------------------------------------------------------------
|
||
|
*
|
||
|
* Let W = [ V I ] ( I is K-by-K, V is K-by-M )
|
||
|
*
|
||
|
* Form H C or H**H C where C = [ B ] (M-by-N)
|
||
|
* [ A ] (K-by-N)
|
||
|
*
|
||
|
* H = I - W**H T W or H**H = I - W**H T**H W
|
||
|
*
|
||
|
* A = A - T (A + V B) or A = A - T**H (A + V B)
|
||
|
* B = B - V**H T (A + V B) or B = B - V**H T**H (A + V B)
|
||
|
*
|
||
|
* ---------------------------------------------------------------------------
|
||
|
*
|
||
|
MP = MIN( L+1, M )
|
||
|
KP = MIN( K-L+1, K )
|
||
|
*
|
||
|
DO J = 1, N
|
||
|
DO I = 1, L
|
||
|
WORK( K-L+I, J ) = B( I, J )
|
||
|
END DO
|
||
|
END DO
|
||
|
CALL CTRMM( 'L', 'U', 'N', 'N', L, N, ONE, V( KP, 1 ), LDV,
|
||
|
$ WORK( KP, 1 ), LDWORK )
|
||
|
CALL CGEMM( 'N', 'N', L, N, M-L, ONE, V( KP, MP ), LDV,
|
||
|
$ B( MP, 1 ), LDB, ONE, WORK( KP, 1 ), LDWORK )
|
||
|
CALL CGEMM( 'N', 'N', K-L, N, M, ONE, V, LDV, B, LDB,
|
||
|
$ ZERO, WORK, LDWORK )
|
||
|
*
|
||
|
DO J = 1, N
|
||
|
DO I = 1, K
|
||
|
WORK( I, J ) = WORK( I, J ) + A( I, J )
|
||
|
END DO
|
||
|
END DO
|
||
|
*
|
||
|
CALL CTRMM( 'L', 'L ', TRANS, 'N', K, N, ONE, T, LDT,
|
||
|
$ WORK, LDWORK )
|
||
|
*
|
||
|
DO J = 1, N
|
||
|
DO I = 1, K
|
||
|
A( I, J ) = A( I, J ) - WORK( I, J )
|
||
|
END DO
|
||
|
END DO
|
||
|
*
|
||
|
CALL CGEMM( 'C', 'N', M-L, N, K, -ONE, V( 1, MP ), LDV,
|
||
|
$ WORK, LDWORK, ONE, B( MP, 1 ), LDB )
|
||
|
CALL CGEMM( 'C', 'N', L, N, K-L, -ONE, V, LDV,
|
||
|
$ WORK, LDWORK, ONE, B, LDB )
|
||
|
CALL CTRMM( 'L', 'U', 'C', 'N', L, N, ONE, V( KP, 1 ), LDV,
|
||
|
$ WORK( KP, 1 ), LDWORK )
|
||
|
DO J = 1, N
|
||
|
DO I = 1, L
|
||
|
B( I, J ) = B( I, J ) - WORK( K-L+I, J )
|
||
|
END DO
|
||
|
END DO
|
||
|
*
|
||
|
* ---------------------------------------------------------------------------
|
||
|
*
|
||
|
ELSE IF( ROW .AND. BACKWARD .AND. RIGHT ) THEN
|
||
|
*
|
||
|
* ---------------------------------------------------------------------------
|
||
|
*
|
||
|
* Let W = [ V I ] ( I is K-by-K, V is K-by-N )
|
||
|
*
|
||
|
* Form C H or C H**H where C = [ B A ] (A is M-by-K, B is M-by-N)
|
||
|
*
|
||
|
* H = I - W**H T W or H**H = I - W**H T**H W
|
||
|
*
|
||
|
* A = A - (A + B V**H) T or A = A - (A + B V**H) T**H
|
||
|
* B = B - (A + B V**H) T V or B = B - (A + B V**H) T**H V
|
||
|
*
|
||
|
* ---------------------------------------------------------------------------
|
||
|
*
|
||
|
NP = MIN( L+1, N )
|
||
|
KP = MIN( K-L+1, K )
|
||
|
*
|
||
|
DO J = 1, L
|
||
|
DO I = 1, M
|
||
|
WORK( I, K-L+J ) = B( I, J )
|
||
|
END DO
|
||
|
END DO
|
||
|
CALL CTRMM( 'R', 'U', 'C', 'N', M, L, ONE, V( KP, 1 ), LDV,
|
||
|
$ WORK( 1, KP ), LDWORK )
|
||
|
CALL CGEMM( 'N', 'C', M, L, N-L, ONE, B( 1, NP ), LDB,
|
||
|
$ V( KP, NP ), LDV, ONE, WORK( 1, KP ), LDWORK )
|
||
|
CALL CGEMM( 'N', 'C', M, K-L, N, ONE, B, LDB, V, LDV,
|
||
|
$ ZERO, WORK, LDWORK )
|
||
|
*
|
||
|
DO J = 1, K
|
||
|
DO I = 1, M
|
||
|
WORK( I, J ) = WORK( I, J ) + A( I, J )
|
||
|
END DO
|
||
|
END DO
|
||
|
*
|
||
|
CALL CTRMM( 'R', 'L', TRANS, 'N', M, K, ONE, T, LDT,
|
||
|
$ WORK, LDWORK )
|
||
|
*
|
||
|
DO J = 1, K
|
||
|
DO I = 1, M
|
||
|
A( I, J ) = A( I, J ) - WORK( I, J )
|
||
|
END DO
|
||
|
END DO
|
||
|
*
|
||
|
CALL CGEMM( 'N', 'N', M, N-L, K, -ONE, WORK, LDWORK,
|
||
|
$ V( 1, NP ), LDV, ONE, B( 1, NP ), LDB )
|
||
|
CALL CGEMM( 'N', 'N', M, L, K-L , -ONE, WORK, LDWORK,
|
||
|
$ V, LDV, ONE, B, LDB )
|
||
|
CALL CTRMM( 'R', 'U', 'N', 'N', M, L, ONE, V( KP, 1 ), LDV,
|
||
|
$ WORK( 1, KP ), LDWORK )
|
||
|
DO J = 1, L
|
||
|
DO I = 1, M
|
||
|
B( I, J ) = B( I, J ) - WORK( I, K-L+J )
|
||
|
END DO
|
||
|
END DO
|
||
|
*
|
||
|
END IF
|
||
|
*
|
||
|
RETURN
|
||
|
*
|
||
|
* End of CTPRFB
|
||
|
*
|
||
|
END
|