You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
482 lines
15 KiB
482 lines
15 KiB
2 years ago
|
*> \brief \b CTPRFS
|
||
|
*
|
||
|
* =========== DOCUMENTATION ===========
|
||
|
*
|
||
|
* Online html documentation available at
|
||
|
* http://www.netlib.org/lapack/explore-html/
|
||
|
*
|
||
|
*> \htmlonly
|
||
|
*> Download CTPRFS + dependencies
|
||
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/ctprfs.f">
|
||
|
*> [TGZ]</a>
|
||
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/ctprfs.f">
|
||
|
*> [ZIP]</a>
|
||
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/ctprfs.f">
|
||
|
*> [TXT]</a>
|
||
|
*> \endhtmlonly
|
||
|
*
|
||
|
* Definition:
|
||
|
* ===========
|
||
|
*
|
||
|
* SUBROUTINE CTPRFS( UPLO, TRANS, DIAG, N, NRHS, AP, B, LDB, X, LDX,
|
||
|
* FERR, BERR, WORK, RWORK, INFO )
|
||
|
*
|
||
|
* .. Scalar Arguments ..
|
||
|
* CHARACTER DIAG, TRANS, UPLO
|
||
|
* INTEGER INFO, LDB, LDX, N, NRHS
|
||
|
* ..
|
||
|
* .. Array Arguments ..
|
||
|
* REAL BERR( * ), FERR( * ), RWORK( * )
|
||
|
* COMPLEX AP( * ), B( LDB, * ), WORK( * ), X( LDX, * )
|
||
|
* ..
|
||
|
*
|
||
|
*
|
||
|
*> \par Purpose:
|
||
|
* =============
|
||
|
*>
|
||
|
*> \verbatim
|
||
|
*>
|
||
|
*> CTPRFS provides error bounds and backward error estimates for the
|
||
|
*> solution to a system of linear equations with a triangular packed
|
||
|
*> coefficient matrix.
|
||
|
*>
|
||
|
*> The solution matrix X must be computed by CTPTRS or some other
|
||
|
*> means before entering this routine. CTPRFS does not do iterative
|
||
|
*> refinement because doing so cannot improve the backward error.
|
||
|
*> \endverbatim
|
||
|
*
|
||
|
* Arguments:
|
||
|
* ==========
|
||
|
*
|
||
|
*> \param[in] UPLO
|
||
|
*> \verbatim
|
||
|
*> UPLO is CHARACTER*1
|
||
|
*> = 'U': A is upper triangular;
|
||
|
*> = 'L': A is lower triangular.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] TRANS
|
||
|
*> \verbatim
|
||
|
*> TRANS is CHARACTER*1
|
||
|
*> Specifies the form of the system of equations:
|
||
|
*> = 'N': A * X = B (No transpose)
|
||
|
*> = 'T': A**T * X = B (Transpose)
|
||
|
*> = 'C': A**H * X = B (Conjugate transpose)
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] DIAG
|
||
|
*> \verbatim
|
||
|
*> DIAG is CHARACTER*1
|
||
|
*> = 'N': A is non-unit triangular;
|
||
|
*> = 'U': A is unit triangular.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] N
|
||
|
*> \verbatim
|
||
|
*> N is INTEGER
|
||
|
*> The order of the matrix A. N >= 0.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] NRHS
|
||
|
*> \verbatim
|
||
|
*> NRHS is INTEGER
|
||
|
*> The number of right hand sides, i.e., the number of columns
|
||
|
*> of the matrices B and X. NRHS >= 0.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] AP
|
||
|
*> \verbatim
|
||
|
*> AP is COMPLEX array, dimension (N*(N+1)/2)
|
||
|
*> The upper or lower triangular matrix A, packed columnwise in
|
||
|
*> a linear array. The j-th column of A is stored in the array
|
||
|
*> AP as follows:
|
||
|
*> if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
|
||
|
*> if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.
|
||
|
*> If DIAG = 'U', the diagonal elements of A are not referenced
|
||
|
*> and are assumed to be 1.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] B
|
||
|
*> \verbatim
|
||
|
*> B is COMPLEX array, dimension (LDB,NRHS)
|
||
|
*> The right hand side matrix B.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] LDB
|
||
|
*> \verbatim
|
||
|
*> LDB is INTEGER
|
||
|
*> The leading dimension of the array B. LDB >= max(1,N).
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] X
|
||
|
*> \verbatim
|
||
|
*> X is COMPLEX array, dimension (LDX,NRHS)
|
||
|
*> The solution matrix X.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] LDX
|
||
|
*> \verbatim
|
||
|
*> LDX is INTEGER
|
||
|
*> The leading dimension of the array X. LDX >= max(1,N).
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] FERR
|
||
|
*> \verbatim
|
||
|
*> FERR is REAL array, dimension (NRHS)
|
||
|
*> The estimated forward error bound for each solution vector
|
||
|
*> X(j) (the j-th column of the solution matrix X).
|
||
|
*> If XTRUE is the true solution corresponding to X(j), FERR(j)
|
||
|
*> is an estimated upper bound for the magnitude of the largest
|
||
|
*> element in (X(j) - XTRUE) divided by the magnitude of the
|
||
|
*> largest element in X(j). The estimate is as reliable as
|
||
|
*> the estimate for RCOND, and is almost always a slight
|
||
|
*> overestimate of the true error.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] BERR
|
||
|
*> \verbatim
|
||
|
*> BERR is REAL array, dimension (NRHS)
|
||
|
*> The componentwise relative backward error of each solution
|
||
|
*> vector X(j) (i.e., the smallest relative change in
|
||
|
*> any element of A or B that makes X(j) an exact solution).
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] WORK
|
||
|
*> \verbatim
|
||
|
*> WORK is COMPLEX array, dimension (2*N)
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] RWORK
|
||
|
*> \verbatim
|
||
|
*> RWORK is REAL array, dimension (N)
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] INFO
|
||
|
*> \verbatim
|
||
|
*> INFO is INTEGER
|
||
|
*> = 0: successful exit
|
||
|
*> < 0: if INFO = -i, the i-th argument had an illegal value
|
||
|
*> \endverbatim
|
||
|
*
|
||
|
* Authors:
|
||
|
* ========
|
||
|
*
|
||
|
*> \author Univ. of Tennessee
|
||
|
*> \author Univ. of California Berkeley
|
||
|
*> \author Univ. of Colorado Denver
|
||
|
*> \author NAG Ltd.
|
||
|
*
|
||
|
*> \ingroup complexOTHERcomputational
|
||
|
*
|
||
|
* =====================================================================
|
||
|
SUBROUTINE CTPRFS( UPLO, TRANS, DIAG, N, NRHS, AP, B, LDB, X, LDX,
|
||
|
$ FERR, BERR, WORK, RWORK, INFO )
|
||
|
*
|
||
|
* -- LAPACK computational routine --
|
||
|
* -- LAPACK is a software package provided by Univ. of Tennessee, --
|
||
|
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
||
|
*
|
||
|
* .. Scalar Arguments ..
|
||
|
CHARACTER DIAG, TRANS, UPLO
|
||
|
INTEGER INFO, LDB, LDX, N, NRHS
|
||
|
* ..
|
||
|
* .. Array Arguments ..
|
||
|
REAL BERR( * ), FERR( * ), RWORK( * )
|
||
|
COMPLEX AP( * ), B( LDB, * ), WORK( * ), X( LDX, * )
|
||
|
* ..
|
||
|
*
|
||
|
* =====================================================================
|
||
|
*
|
||
|
* .. Parameters ..
|
||
|
REAL ZERO
|
||
|
PARAMETER ( ZERO = 0.0E+0 )
|
||
|
COMPLEX ONE
|
||
|
PARAMETER ( ONE = ( 1.0E+0, 0.0E+0 ) )
|
||
|
* ..
|
||
|
* .. Local Scalars ..
|
||
|
LOGICAL NOTRAN, NOUNIT, UPPER
|
||
|
CHARACTER TRANSN, TRANST
|
||
|
INTEGER I, J, K, KASE, KC, NZ
|
||
|
REAL EPS, LSTRES, S, SAFE1, SAFE2, SAFMIN, XK
|
||
|
COMPLEX ZDUM
|
||
|
* ..
|
||
|
* .. Local Arrays ..
|
||
|
INTEGER ISAVE( 3 )
|
||
|
* ..
|
||
|
* .. External Subroutines ..
|
||
|
EXTERNAL CAXPY, CCOPY, CLACN2, CTPMV, CTPSV, XERBLA
|
||
|
* ..
|
||
|
* .. Intrinsic Functions ..
|
||
|
INTRINSIC ABS, AIMAG, MAX, REAL
|
||
|
* ..
|
||
|
* .. External Functions ..
|
||
|
LOGICAL LSAME
|
||
|
REAL SLAMCH
|
||
|
EXTERNAL LSAME, SLAMCH
|
||
|
* ..
|
||
|
* .. Statement Functions ..
|
||
|
REAL CABS1
|
||
|
* ..
|
||
|
* .. Statement Function definitions ..
|
||
|
CABS1( ZDUM ) = ABS( REAL( ZDUM ) ) + ABS( AIMAG( ZDUM ) )
|
||
|
* ..
|
||
|
* .. Executable Statements ..
|
||
|
*
|
||
|
* Test the input parameters.
|
||
|
*
|
||
|
INFO = 0
|
||
|
UPPER = LSAME( UPLO, 'U' )
|
||
|
NOTRAN = LSAME( TRANS, 'N' )
|
||
|
NOUNIT = LSAME( DIAG, 'N' )
|
||
|
*
|
||
|
IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
|
||
|
INFO = -1
|
||
|
ELSE IF( .NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'T' ) .AND. .NOT.
|
||
|
$ LSAME( TRANS, 'C' ) ) THEN
|
||
|
INFO = -2
|
||
|
ELSE IF( .NOT.NOUNIT .AND. .NOT.LSAME( DIAG, 'U' ) ) THEN
|
||
|
INFO = -3
|
||
|
ELSE IF( N.LT.0 ) THEN
|
||
|
INFO = -4
|
||
|
ELSE IF( NRHS.LT.0 ) THEN
|
||
|
INFO = -5
|
||
|
ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
|
||
|
INFO = -8
|
||
|
ELSE IF( LDX.LT.MAX( 1, N ) ) THEN
|
||
|
INFO = -10
|
||
|
END IF
|
||
|
IF( INFO.NE.0 ) THEN
|
||
|
CALL XERBLA( 'CTPRFS', -INFO )
|
||
|
RETURN
|
||
|
END IF
|
||
|
*
|
||
|
* Quick return if possible
|
||
|
*
|
||
|
IF( N.EQ.0 .OR. NRHS.EQ.0 ) THEN
|
||
|
DO 10 J = 1, NRHS
|
||
|
FERR( J ) = ZERO
|
||
|
BERR( J ) = ZERO
|
||
|
10 CONTINUE
|
||
|
RETURN
|
||
|
END IF
|
||
|
*
|
||
|
IF( NOTRAN ) THEN
|
||
|
TRANSN = 'N'
|
||
|
TRANST = 'C'
|
||
|
ELSE
|
||
|
TRANSN = 'C'
|
||
|
TRANST = 'N'
|
||
|
END IF
|
||
|
*
|
||
|
* NZ = maximum number of nonzero elements in each row of A, plus 1
|
||
|
*
|
||
|
NZ = N + 1
|
||
|
EPS = SLAMCH( 'Epsilon' )
|
||
|
SAFMIN = SLAMCH( 'Safe minimum' )
|
||
|
SAFE1 = NZ*SAFMIN
|
||
|
SAFE2 = SAFE1 / EPS
|
||
|
*
|
||
|
* Do for each right hand side
|
||
|
*
|
||
|
DO 250 J = 1, NRHS
|
||
|
*
|
||
|
* Compute residual R = B - op(A) * X,
|
||
|
* where op(A) = A, A**T, or A**H, depending on TRANS.
|
||
|
*
|
||
|
CALL CCOPY( N, X( 1, J ), 1, WORK, 1 )
|
||
|
CALL CTPMV( UPLO, TRANS, DIAG, N, AP, WORK, 1 )
|
||
|
CALL CAXPY( N, -ONE, B( 1, J ), 1, WORK, 1 )
|
||
|
*
|
||
|
* Compute componentwise relative backward error from formula
|
||
|
*
|
||
|
* max(i) ( abs(R(i)) / ( abs(op(A))*abs(X) + abs(B) )(i) )
|
||
|
*
|
||
|
* where abs(Z) is the componentwise absolute value of the matrix
|
||
|
* or vector Z. If the i-th component of the denominator is less
|
||
|
* than SAFE2, then SAFE1 is added to the i-th components of the
|
||
|
* numerator and denominator before dividing.
|
||
|
*
|
||
|
DO 20 I = 1, N
|
||
|
RWORK( I ) = CABS1( B( I, J ) )
|
||
|
20 CONTINUE
|
||
|
*
|
||
|
IF( NOTRAN ) THEN
|
||
|
*
|
||
|
* Compute abs(A)*abs(X) + abs(B).
|
||
|
*
|
||
|
IF( UPPER ) THEN
|
||
|
KC = 1
|
||
|
IF( NOUNIT ) THEN
|
||
|
DO 40 K = 1, N
|
||
|
XK = CABS1( X( K, J ) )
|
||
|
DO 30 I = 1, K
|
||
|
RWORK( I ) = RWORK( I ) +
|
||
|
$ CABS1( AP( KC+I-1 ) )*XK
|
||
|
30 CONTINUE
|
||
|
KC = KC + K
|
||
|
40 CONTINUE
|
||
|
ELSE
|
||
|
DO 60 K = 1, N
|
||
|
XK = CABS1( X( K, J ) )
|
||
|
DO 50 I = 1, K - 1
|
||
|
RWORK( I ) = RWORK( I ) +
|
||
|
$ CABS1( AP( KC+I-1 ) )*XK
|
||
|
50 CONTINUE
|
||
|
RWORK( K ) = RWORK( K ) + XK
|
||
|
KC = KC + K
|
||
|
60 CONTINUE
|
||
|
END IF
|
||
|
ELSE
|
||
|
KC = 1
|
||
|
IF( NOUNIT ) THEN
|
||
|
DO 80 K = 1, N
|
||
|
XK = CABS1( X( K, J ) )
|
||
|
DO 70 I = K, N
|
||
|
RWORK( I ) = RWORK( I ) +
|
||
|
$ CABS1( AP( KC+I-K ) )*XK
|
||
|
70 CONTINUE
|
||
|
KC = KC + N - K + 1
|
||
|
80 CONTINUE
|
||
|
ELSE
|
||
|
DO 100 K = 1, N
|
||
|
XK = CABS1( X( K, J ) )
|
||
|
DO 90 I = K + 1, N
|
||
|
RWORK( I ) = RWORK( I ) +
|
||
|
$ CABS1( AP( KC+I-K ) )*XK
|
||
|
90 CONTINUE
|
||
|
RWORK( K ) = RWORK( K ) + XK
|
||
|
KC = KC + N - K + 1
|
||
|
100 CONTINUE
|
||
|
END IF
|
||
|
END IF
|
||
|
ELSE
|
||
|
*
|
||
|
* Compute abs(A**H)*abs(X) + abs(B).
|
||
|
*
|
||
|
IF( UPPER ) THEN
|
||
|
KC = 1
|
||
|
IF( NOUNIT ) THEN
|
||
|
DO 120 K = 1, N
|
||
|
S = ZERO
|
||
|
DO 110 I = 1, K
|
||
|
S = S + CABS1( AP( KC+I-1 ) )*CABS1( X( I, J ) )
|
||
|
110 CONTINUE
|
||
|
RWORK( K ) = RWORK( K ) + S
|
||
|
KC = KC + K
|
||
|
120 CONTINUE
|
||
|
ELSE
|
||
|
DO 140 K = 1, N
|
||
|
S = CABS1( X( K, J ) )
|
||
|
DO 130 I = 1, K - 1
|
||
|
S = S + CABS1( AP( KC+I-1 ) )*CABS1( X( I, J ) )
|
||
|
130 CONTINUE
|
||
|
RWORK( K ) = RWORK( K ) + S
|
||
|
KC = KC + K
|
||
|
140 CONTINUE
|
||
|
END IF
|
||
|
ELSE
|
||
|
KC = 1
|
||
|
IF( NOUNIT ) THEN
|
||
|
DO 160 K = 1, N
|
||
|
S = ZERO
|
||
|
DO 150 I = K, N
|
||
|
S = S + CABS1( AP( KC+I-K ) )*CABS1( X( I, J ) )
|
||
|
150 CONTINUE
|
||
|
RWORK( K ) = RWORK( K ) + S
|
||
|
KC = KC + N - K + 1
|
||
|
160 CONTINUE
|
||
|
ELSE
|
||
|
DO 180 K = 1, N
|
||
|
S = CABS1( X( K, J ) )
|
||
|
DO 170 I = K + 1, N
|
||
|
S = S + CABS1( AP( KC+I-K ) )*CABS1( X( I, J ) )
|
||
|
170 CONTINUE
|
||
|
RWORK( K ) = RWORK( K ) + S
|
||
|
KC = KC + N - K + 1
|
||
|
180 CONTINUE
|
||
|
END IF
|
||
|
END IF
|
||
|
END IF
|
||
|
S = ZERO
|
||
|
DO 190 I = 1, N
|
||
|
IF( RWORK( I ).GT.SAFE2 ) THEN
|
||
|
S = MAX( S, CABS1( WORK( I ) ) / RWORK( I ) )
|
||
|
ELSE
|
||
|
S = MAX( S, ( CABS1( WORK( I ) )+SAFE1 ) /
|
||
|
$ ( RWORK( I )+SAFE1 ) )
|
||
|
END IF
|
||
|
190 CONTINUE
|
||
|
BERR( J ) = S
|
||
|
*
|
||
|
* Bound error from formula
|
||
|
*
|
||
|
* norm(X - XTRUE) / norm(X) .le. FERR =
|
||
|
* norm( abs(inv(op(A)))*
|
||
|
* ( abs(R) + NZ*EPS*( abs(op(A))*abs(X)+abs(B) ))) / norm(X)
|
||
|
*
|
||
|
* where
|
||
|
* norm(Z) is the magnitude of the largest component of Z
|
||
|
* inv(op(A)) is the inverse of op(A)
|
||
|
* abs(Z) is the componentwise absolute value of the matrix or
|
||
|
* vector Z
|
||
|
* NZ is the maximum number of nonzeros in any row of A, plus 1
|
||
|
* EPS is machine epsilon
|
||
|
*
|
||
|
* The i-th component of abs(R)+NZ*EPS*(abs(op(A))*abs(X)+abs(B))
|
||
|
* is incremented by SAFE1 if the i-th component of
|
||
|
* abs(op(A))*abs(X) + abs(B) is less than SAFE2.
|
||
|
*
|
||
|
* Use CLACN2 to estimate the infinity-norm of the matrix
|
||
|
* inv(op(A)) * diag(W),
|
||
|
* where W = abs(R) + NZ*EPS*( abs(op(A))*abs(X)+abs(B) )))
|
||
|
*
|
||
|
DO 200 I = 1, N
|
||
|
IF( RWORK( I ).GT.SAFE2 ) THEN
|
||
|
RWORK( I ) = CABS1( WORK( I ) ) + NZ*EPS*RWORK( I )
|
||
|
ELSE
|
||
|
RWORK( I ) = CABS1( WORK( I ) ) + NZ*EPS*RWORK( I ) +
|
||
|
$ SAFE1
|
||
|
END IF
|
||
|
200 CONTINUE
|
||
|
*
|
||
|
KASE = 0
|
||
|
210 CONTINUE
|
||
|
CALL CLACN2( N, WORK( N+1 ), WORK, FERR( J ), KASE, ISAVE )
|
||
|
IF( KASE.NE.0 ) THEN
|
||
|
IF( KASE.EQ.1 ) THEN
|
||
|
*
|
||
|
* Multiply by diag(W)*inv(op(A)**H).
|
||
|
*
|
||
|
CALL CTPSV( UPLO, TRANST, DIAG, N, AP, WORK, 1 )
|
||
|
DO 220 I = 1, N
|
||
|
WORK( I ) = RWORK( I )*WORK( I )
|
||
|
220 CONTINUE
|
||
|
ELSE
|
||
|
*
|
||
|
* Multiply by inv(op(A))*diag(W).
|
||
|
*
|
||
|
DO 230 I = 1, N
|
||
|
WORK( I ) = RWORK( I )*WORK( I )
|
||
|
230 CONTINUE
|
||
|
CALL CTPSV( UPLO, TRANSN, DIAG, N, AP, WORK, 1 )
|
||
|
END IF
|
||
|
GO TO 210
|
||
|
END IF
|
||
|
*
|
||
|
* Normalize error.
|
||
|
*
|
||
|
LSTRES = ZERO
|
||
|
DO 240 I = 1, N
|
||
|
LSTRES = MAX( LSTRES, CABS1( X( I, J ) ) )
|
||
|
240 CONTINUE
|
||
|
IF( LSTRES.NE.ZERO )
|
||
|
$ FERR( J ) = FERR( J ) / LSTRES
|
||
|
*
|
||
|
250 CONTINUE
|
||
|
*
|
||
|
RETURN
|
||
|
*
|
||
|
* End of CTPRFS
|
||
|
*
|
||
|
END
|