You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
412 lines
14 KiB
412 lines
14 KiB
2 years ago
|
*> \brief <b> DGTSVX computes the solution to system of linear equations A * X = B for GT matrices </b>
|
||
|
*
|
||
|
* =========== DOCUMENTATION ===========
|
||
|
*
|
||
|
* Online html documentation available at
|
||
|
* http://www.netlib.org/lapack/explore-html/
|
||
|
*
|
||
|
*> \htmlonly
|
||
|
*> Download DGTSVX + dependencies
|
||
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dgtsvx.f">
|
||
|
*> [TGZ]</a>
|
||
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dgtsvx.f">
|
||
|
*> [ZIP]</a>
|
||
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dgtsvx.f">
|
||
|
*> [TXT]</a>
|
||
|
*> \endhtmlonly
|
||
|
*
|
||
|
* Definition:
|
||
|
* ===========
|
||
|
*
|
||
|
* SUBROUTINE DGTSVX( FACT, TRANS, N, NRHS, DL, D, DU, DLF, DF, DUF,
|
||
|
* DU2, IPIV, B, LDB, X, LDX, RCOND, FERR, BERR,
|
||
|
* WORK, IWORK, INFO )
|
||
|
*
|
||
|
* .. Scalar Arguments ..
|
||
|
* CHARACTER FACT, TRANS
|
||
|
* INTEGER INFO, LDB, LDX, N, NRHS
|
||
|
* DOUBLE PRECISION RCOND
|
||
|
* ..
|
||
|
* .. Array Arguments ..
|
||
|
* INTEGER IPIV( * ), IWORK( * )
|
||
|
* DOUBLE PRECISION B( LDB, * ), BERR( * ), D( * ), DF( * ),
|
||
|
* $ DL( * ), DLF( * ), DU( * ), DU2( * ), DUF( * ),
|
||
|
* $ FERR( * ), WORK( * ), X( LDX, * )
|
||
|
* ..
|
||
|
*
|
||
|
*
|
||
|
*> \par Purpose:
|
||
|
* =============
|
||
|
*>
|
||
|
*> \verbatim
|
||
|
*>
|
||
|
*> DGTSVX uses the LU factorization to compute the solution to a real
|
||
|
*> system of linear equations A * X = B or A**T * X = B,
|
||
|
*> where A is a tridiagonal matrix of order N and X and B are N-by-NRHS
|
||
|
*> matrices.
|
||
|
*>
|
||
|
*> Error bounds on the solution and a condition estimate are also
|
||
|
*> provided.
|
||
|
*> \endverbatim
|
||
|
*
|
||
|
*> \par Description:
|
||
|
* =================
|
||
|
*>
|
||
|
*> \verbatim
|
||
|
*>
|
||
|
*> The following steps are performed:
|
||
|
*>
|
||
|
*> 1. If FACT = 'N', the LU decomposition is used to factor the matrix A
|
||
|
*> as A = L * U, where L is a product of permutation and unit lower
|
||
|
*> bidiagonal matrices and U is upper triangular with nonzeros in
|
||
|
*> only the main diagonal and first two superdiagonals.
|
||
|
*>
|
||
|
*> 2. If some U(i,i)=0, so that U is exactly singular, then the routine
|
||
|
*> returns with INFO = i. Otherwise, the factored form of A is used
|
||
|
*> to estimate the condition number of the matrix A. If the
|
||
|
*> reciprocal of the condition number is less than machine precision,
|
||
|
*> INFO = N+1 is returned as a warning, but the routine still goes on
|
||
|
*> to solve for X and compute error bounds as described below.
|
||
|
*>
|
||
|
*> 3. The system of equations is solved for X using the factored form
|
||
|
*> of A.
|
||
|
*>
|
||
|
*> 4. Iterative refinement is applied to improve the computed solution
|
||
|
*> matrix and calculate error bounds and backward error estimates
|
||
|
*> for it.
|
||
|
*> \endverbatim
|
||
|
*
|
||
|
* Arguments:
|
||
|
* ==========
|
||
|
*
|
||
|
*> \param[in] FACT
|
||
|
*> \verbatim
|
||
|
*> FACT is CHARACTER*1
|
||
|
*> Specifies whether or not the factored form of A has been
|
||
|
*> supplied on entry.
|
||
|
*> = 'F': DLF, DF, DUF, DU2, and IPIV contain the factored
|
||
|
*> form of A; DL, D, DU, DLF, DF, DUF, DU2 and IPIV
|
||
|
*> will not be modified.
|
||
|
*> = 'N': The matrix will be copied to DLF, DF, and DUF
|
||
|
*> and factored.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] TRANS
|
||
|
*> \verbatim
|
||
|
*> TRANS is CHARACTER*1
|
||
|
*> Specifies the form of the system of equations:
|
||
|
*> = 'N': A * X = B (No transpose)
|
||
|
*> = 'T': A**T * X = B (Transpose)
|
||
|
*> = 'C': A**H * X = B (Conjugate transpose = Transpose)
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] N
|
||
|
*> \verbatim
|
||
|
*> N is INTEGER
|
||
|
*> The order of the matrix A. N >= 0.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] NRHS
|
||
|
*> \verbatim
|
||
|
*> NRHS is INTEGER
|
||
|
*> The number of right hand sides, i.e., the number of columns
|
||
|
*> of the matrix B. NRHS >= 0.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] DL
|
||
|
*> \verbatim
|
||
|
*> DL is DOUBLE PRECISION array, dimension (N-1)
|
||
|
*> The (n-1) subdiagonal elements of A.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] D
|
||
|
*> \verbatim
|
||
|
*> D is DOUBLE PRECISION array, dimension (N)
|
||
|
*> The n diagonal elements of A.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] DU
|
||
|
*> \verbatim
|
||
|
*> DU is DOUBLE PRECISION array, dimension (N-1)
|
||
|
*> The (n-1) superdiagonal elements of A.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in,out] DLF
|
||
|
*> \verbatim
|
||
|
*> DLF is DOUBLE PRECISION array, dimension (N-1)
|
||
|
*> If FACT = 'F', then DLF is an input argument and on entry
|
||
|
*> contains the (n-1) multipliers that define the matrix L from
|
||
|
*> the LU factorization of A as computed by DGTTRF.
|
||
|
*>
|
||
|
*> If FACT = 'N', then DLF is an output argument and on exit
|
||
|
*> contains the (n-1) multipliers that define the matrix L from
|
||
|
*> the LU factorization of A.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in,out] DF
|
||
|
*> \verbatim
|
||
|
*> DF is DOUBLE PRECISION array, dimension (N)
|
||
|
*> If FACT = 'F', then DF is an input argument and on entry
|
||
|
*> contains the n diagonal elements of the upper triangular
|
||
|
*> matrix U from the LU factorization of A.
|
||
|
*>
|
||
|
*> If FACT = 'N', then DF is an output argument and on exit
|
||
|
*> contains the n diagonal elements of the upper triangular
|
||
|
*> matrix U from the LU factorization of A.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in,out] DUF
|
||
|
*> \verbatim
|
||
|
*> DUF is DOUBLE PRECISION array, dimension (N-1)
|
||
|
*> If FACT = 'F', then DUF is an input argument and on entry
|
||
|
*> contains the (n-1) elements of the first superdiagonal of U.
|
||
|
*>
|
||
|
*> If FACT = 'N', then DUF is an output argument and on exit
|
||
|
*> contains the (n-1) elements of the first superdiagonal of U.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in,out] DU2
|
||
|
*> \verbatim
|
||
|
*> DU2 is DOUBLE PRECISION array, dimension (N-2)
|
||
|
*> If FACT = 'F', then DU2 is an input argument and on entry
|
||
|
*> contains the (n-2) elements of the second superdiagonal of
|
||
|
*> U.
|
||
|
*>
|
||
|
*> If FACT = 'N', then DU2 is an output argument and on exit
|
||
|
*> contains the (n-2) elements of the second superdiagonal of
|
||
|
*> U.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in,out] IPIV
|
||
|
*> \verbatim
|
||
|
*> IPIV is INTEGER array, dimension (N)
|
||
|
*> If FACT = 'F', then IPIV is an input argument and on entry
|
||
|
*> contains the pivot indices from the LU factorization of A as
|
||
|
*> computed by DGTTRF.
|
||
|
*>
|
||
|
*> If FACT = 'N', then IPIV is an output argument and on exit
|
||
|
*> contains the pivot indices from the LU factorization of A;
|
||
|
*> row i of the matrix was interchanged with row IPIV(i).
|
||
|
*> IPIV(i) will always be either i or i+1; IPIV(i) = i indicates
|
||
|
*> a row interchange was not required.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] B
|
||
|
*> \verbatim
|
||
|
*> B is DOUBLE PRECISION array, dimension (LDB,NRHS)
|
||
|
*> The N-by-NRHS right hand side matrix B.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] LDB
|
||
|
*> \verbatim
|
||
|
*> LDB is INTEGER
|
||
|
*> The leading dimension of the array B. LDB >= max(1,N).
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] X
|
||
|
*> \verbatim
|
||
|
*> X is DOUBLE PRECISION array, dimension (LDX,NRHS)
|
||
|
*> If INFO = 0 or INFO = N+1, the N-by-NRHS solution matrix X.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] LDX
|
||
|
*> \verbatim
|
||
|
*> LDX is INTEGER
|
||
|
*> The leading dimension of the array X. LDX >= max(1,N).
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] RCOND
|
||
|
*> \verbatim
|
||
|
*> RCOND is DOUBLE PRECISION
|
||
|
*> The estimate of the reciprocal condition number of the matrix
|
||
|
*> A. If RCOND is less than the machine precision (in
|
||
|
*> particular, if RCOND = 0), the matrix is singular to working
|
||
|
*> precision. This condition is indicated by a return code of
|
||
|
*> INFO > 0.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] FERR
|
||
|
*> \verbatim
|
||
|
*> FERR is DOUBLE PRECISION array, dimension (NRHS)
|
||
|
*> The estimated forward error bound for each solution vector
|
||
|
*> X(j) (the j-th column of the solution matrix X).
|
||
|
*> If XTRUE is the true solution corresponding to X(j), FERR(j)
|
||
|
*> is an estimated upper bound for the magnitude of the largest
|
||
|
*> element in (X(j) - XTRUE) divided by the magnitude of the
|
||
|
*> largest element in X(j). The estimate is as reliable as
|
||
|
*> the estimate for RCOND, and is almost always a slight
|
||
|
*> overestimate of the true error.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] BERR
|
||
|
*> \verbatim
|
||
|
*> BERR is DOUBLE PRECISION array, dimension (NRHS)
|
||
|
*> The componentwise relative backward error of each solution
|
||
|
*> vector X(j) (i.e., the smallest relative change in
|
||
|
*> any element of A or B that makes X(j) an exact solution).
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] WORK
|
||
|
*> \verbatim
|
||
|
*> WORK is DOUBLE PRECISION array, dimension (3*N)
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] IWORK
|
||
|
*> \verbatim
|
||
|
*> IWORK is INTEGER array, dimension (N)
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] INFO
|
||
|
*> \verbatim
|
||
|
*> INFO is INTEGER
|
||
|
*> = 0: successful exit
|
||
|
*> < 0: if INFO = -i, the i-th argument had an illegal value
|
||
|
*> > 0: if INFO = i, and i is
|
||
|
*> <= N: U(i,i) is exactly zero. The factorization
|
||
|
*> has not been completed unless i = N, but the
|
||
|
*> factor U is exactly singular, so the solution
|
||
|
*> and error bounds could not be computed.
|
||
|
*> RCOND = 0 is returned.
|
||
|
*> = N+1: U is nonsingular, but RCOND is less than machine
|
||
|
*> precision, meaning that the matrix is singular
|
||
|
*> to working precision. Nevertheless, the
|
||
|
*> solution and error bounds are computed because
|
||
|
*> there are a number of situations where the
|
||
|
*> computed solution can be more accurate than the
|
||
|
*> value of RCOND would suggest.
|
||
|
*> \endverbatim
|
||
|
*
|
||
|
* Authors:
|
||
|
* ========
|
||
|
*
|
||
|
*> \author Univ. of Tennessee
|
||
|
*> \author Univ. of California Berkeley
|
||
|
*> \author Univ. of Colorado Denver
|
||
|
*> \author NAG Ltd.
|
||
|
*
|
||
|
*> \ingroup doubleGTsolve
|
||
|
*
|
||
|
* =====================================================================
|
||
|
SUBROUTINE DGTSVX( FACT, TRANS, N, NRHS, DL, D, DU, DLF, DF, DUF,
|
||
|
$ DU2, IPIV, B, LDB, X, LDX, RCOND, FERR, BERR,
|
||
|
$ WORK, IWORK, INFO )
|
||
|
*
|
||
|
* -- LAPACK driver routine --
|
||
|
* -- LAPACK is a software package provided by Univ. of Tennessee, --
|
||
|
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
||
|
*
|
||
|
* .. Scalar Arguments ..
|
||
|
CHARACTER FACT, TRANS
|
||
|
INTEGER INFO, LDB, LDX, N, NRHS
|
||
|
DOUBLE PRECISION RCOND
|
||
|
* ..
|
||
|
* .. Array Arguments ..
|
||
|
INTEGER IPIV( * ), IWORK( * )
|
||
|
DOUBLE PRECISION B( LDB, * ), BERR( * ), D( * ), DF( * ),
|
||
|
$ DL( * ), DLF( * ), DU( * ), DU2( * ), DUF( * ),
|
||
|
$ FERR( * ), WORK( * ), X( LDX, * )
|
||
|
* ..
|
||
|
*
|
||
|
* =====================================================================
|
||
|
*
|
||
|
* .. Parameters ..
|
||
|
DOUBLE PRECISION ZERO
|
||
|
PARAMETER ( ZERO = 0.0D+0 )
|
||
|
* ..
|
||
|
* .. Local Scalars ..
|
||
|
LOGICAL NOFACT, NOTRAN
|
||
|
CHARACTER NORM
|
||
|
DOUBLE PRECISION ANORM
|
||
|
* ..
|
||
|
* .. External Functions ..
|
||
|
LOGICAL LSAME
|
||
|
DOUBLE PRECISION DLAMCH, DLANGT
|
||
|
EXTERNAL LSAME, DLAMCH, DLANGT
|
||
|
* ..
|
||
|
* .. External Subroutines ..
|
||
|
EXTERNAL DCOPY, DGTCON, DGTRFS, DGTTRF, DGTTRS, DLACPY,
|
||
|
$ XERBLA
|
||
|
* ..
|
||
|
* .. Intrinsic Functions ..
|
||
|
INTRINSIC MAX
|
||
|
* ..
|
||
|
* .. Executable Statements ..
|
||
|
*
|
||
|
INFO = 0
|
||
|
NOFACT = LSAME( FACT, 'N' )
|
||
|
NOTRAN = LSAME( TRANS, 'N' )
|
||
|
IF( .NOT.NOFACT .AND. .NOT.LSAME( FACT, 'F' ) ) THEN
|
||
|
INFO = -1
|
||
|
ELSE IF( .NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'T' ) .AND. .NOT.
|
||
|
$ LSAME( TRANS, 'C' ) ) THEN
|
||
|
INFO = -2
|
||
|
ELSE IF( N.LT.0 ) THEN
|
||
|
INFO = -3
|
||
|
ELSE IF( NRHS.LT.0 ) THEN
|
||
|
INFO = -4
|
||
|
ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
|
||
|
INFO = -14
|
||
|
ELSE IF( LDX.LT.MAX( 1, N ) ) THEN
|
||
|
INFO = -16
|
||
|
END IF
|
||
|
IF( INFO.NE.0 ) THEN
|
||
|
CALL XERBLA( 'DGTSVX', -INFO )
|
||
|
RETURN
|
||
|
END IF
|
||
|
*
|
||
|
IF( NOFACT ) THEN
|
||
|
*
|
||
|
* Compute the LU factorization of A.
|
||
|
*
|
||
|
CALL DCOPY( N, D, 1, DF, 1 )
|
||
|
IF( N.GT.1 ) THEN
|
||
|
CALL DCOPY( N-1, DL, 1, DLF, 1 )
|
||
|
CALL DCOPY( N-1, DU, 1, DUF, 1 )
|
||
|
END IF
|
||
|
CALL DGTTRF( N, DLF, DF, DUF, DU2, IPIV, INFO )
|
||
|
*
|
||
|
* Return if INFO is non-zero.
|
||
|
*
|
||
|
IF( INFO.GT.0 )THEN
|
||
|
RCOND = ZERO
|
||
|
RETURN
|
||
|
END IF
|
||
|
END IF
|
||
|
*
|
||
|
* Compute the norm of the matrix A.
|
||
|
*
|
||
|
IF( NOTRAN ) THEN
|
||
|
NORM = '1'
|
||
|
ELSE
|
||
|
NORM = 'I'
|
||
|
END IF
|
||
|
ANORM = DLANGT( NORM, N, DL, D, DU )
|
||
|
*
|
||
|
* Compute the reciprocal of the condition number of A.
|
||
|
*
|
||
|
CALL DGTCON( NORM, N, DLF, DF, DUF, DU2, IPIV, ANORM, RCOND, WORK,
|
||
|
$ IWORK, INFO )
|
||
|
*
|
||
|
* Compute the solution vectors X.
|
||
|
*
|
||
|
CALL DLACPY( 'Full', N, NRHS, B, LDB, X, LDX )
|
||
|
CALL DGTTRS( TRANS, N, NRHS, DLF, DF, DUF, DU2, IPIV, X, LDX,
|
||
|
$ INFO )
|
||
|
*
|
||
|
* Use iterative refinement to improve the computed solutions and
|
||
|
* compute error bounds and backward error estimates for them.
|
||
|
*
|
||
|
CALL DGTRFS( TRANS, N, NRHS, DL, D, DU, DLF, DF, DUF, DU2, IPIV,
|
||
|
$ B, LDB, X, LDX, FERR, BERR, WORK, IWORK, INFO )
|
||
|
*
|
||
|
* Set INFO = N+1 if the matrix is singular to working precision.
|
||
|
*
|
||
|
IF( RCOND.LT.DLAMCH( 'Epsilon' ) )
|
||
|
$ INFO = N + 1
|
||
|
*
|
||
|
RETURN
|
||
|
*
|
||
|
* End of DGTSVX
|
||
|
*
|
||
|
END
|