You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
381 lines
12 KiB
381 lines
12 KiB
2 years ago
|
*> \brief \b DLAGTS solves the system of equations (T-λI)x = y or (T-λI)Tx = y,where T is a general tridiagonal matrix and λ a scalar, using the LU factorization computed by slagtf.
|
||
|
*
|
||
|
* =========== DOCUMENTATION ===========
|
||
|
*
|
||
|
* Online html documentation available at
|
||
|
* http://www.netlib.org/lapack/explore-html/
|
||
|
*
|
||
|
*> \htmlonly
|
||
|
*> Download DLAGTS + dependencies
|
||
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlagts.f">
|
||
|
*> [TGZ]</a>
|
||
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlagts.f">
|
||
|
*> [ZIP]</a>
|
||
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlagts.f">
|
||
|
*> [TXT]</a>
|
||
|
*> \endhtmlonly
|
||
|
*
|
||
|
* Definition:
|
||
|
* ===========
|
||
|
*
|
||
|
* SUBROUTINE DLAGTS( JOB, N, A, B, C, D, IN, Y, TOL, INFO )
|
||
|
*
|
||
|
* .. Scalar Arguments ..
|
||
|
* INTEGER INFO, JOB, N
|
||
|
* DOUBLE PRECISION TOL
|
||
|
* ..
|
||
|
* .. Array Arguments ..
|
||
|
* INTEGER IN( * )
|
||
|
* DOUBLE PRECISION A( * ), B( * ), C( * ), D( * ), Y( * )
|
||
|
* ..
|
||
|
*
|
||
|
*
|
||
|
*> \par Purpose:
|
||
|
* =============
|
||
|
*>
|
||
|
*> \verbatim
|
||
|
*>
|
||
|
*> DLAGTS may be used to solve one of the systems of equations
|
||
|
*>
|
||
|
*> (T - lambda*I)*x = y or (T - lambda*I)**T*x = y,
|
||
|
*>
|
||
|
*> where T is an n by n tridiagonal matrix, for x, following the
|
||
|
*> factorization of (T - lambda*I) as
|
||
|
*>
|
||
|
*> (T - lambda*I) = P*L*U ,
|
||
|
*>
|
||
|
*> by routine DLAGTF. The choice of equation to be solved is
|
||
|
*> controlled by the argument JOB, and in each case there is an option
|
||
|
*> to perturb zero or very small diagonal elements of U, this option
|
||
|
*> being intended for use in applications such as inverse iteration.
|
||
|
*> \endverbatim
|
||
|
*
|
||
|
* Arguments:
|
||
|
* ==========
|
||
|
*
|
||
|
*> \param[in] JOB
|
||
|
*> \verbatim
|
||
|
*> JOB is INTEGER
|
||
|
*> Specifies the job to be performed by DLAGTS as follows:
|
||
|
*> = 1: The equations (T - lambda*I)x = y are to be solved,
|
||
|
*> but diagonal elements of U are not to be perturbed.
|
||
|
*> = -1: The equations (T - lambda*I)x = y are to be solved
|
||
|
*> and, if overflow would otherwise occur, the diagonal
|
||
|
*> elements of U are to be perturbed. See argument TOL
|
||
|
*> below.
|
||
|
*> = 2: The equations (T - lambda*I)**Tx = y are to be solved,
|
||
|
*> but diagonal elements of U are not to be perturbed.
|
||
|
*> = -2: The equations (T - lambda*I)**Tx = y are to be solved
|
||
|
*> and, if overflow would otherwise occur, the diagonal
|
||
|
*> elements of U are to be perturbed. See argument TOL
|
||
|
*> below.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] N
|
||
|
*> \verbatim
|
||
|
*> N is INTEGER
|
||
|
*> The order of the matrix T.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] A
|
||
|
*> \verbatim
|
||
|
*> A is DOUBLE PRECISION array, dimension (N)
|
||
|
*> On entry, A must contain the diagonal elements of U as
|
||
|
*> returned from DLAGTF.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] B
|
||
|
*> \verbatim
|
||
|
*> B is DOUBLE PRECISION array, dimension (N-1)
|
||
|
*> On entry, B must contain the first super-diagonal elements of
|
||
|
*> U as returned from DLAGTF.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] C
|
||
|
*> \verbatim
|
||
|
*> C is DOUBLE PRECISION array, dimension (N-1)
|
||
|
*> On entry, C must contain the sub-diagonal elements of L as
|
||
|
*> returned from DLAGTF.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] D
|
||
|
*> \verbatim
|
||
|
*> D is DOUBLE PRECISION array, dimension (N-2)
|
||
|
*> On entry, D must contain the second super-diagonal elements
|
||
|
*> of U as returned from DLAGTF.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] IN
|
||
|
*> \verbatim
|
||
|
*> IN is INTEGER array, dimension (N)
|
||
|
*> On entry, IN must contain details of the matrix P as returned
|
||
|
*> from DLAGTF.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in,out] Y
|
||
|
*> \verbatim
|
||
|
*> Y is DOUBLE PRECISION array, dimension (N)
|
||
|
*> On entry, the right hand side vector y.
|
||
|
*> On exit, Y is overwritten by the solution vector x.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in,out] TOL
|
||
|
*> \verbatim
|
||
|
*> TOL is DOUBLE PRECISION
|
||
|
*> On entry, with JOB < 0, TOL should be the minimum
|
||
|
*> perturbation to be made to very small diagonal elements of U.
|
||
|
*> TOL should normally be chosen as about eps*norm(U), where eps
|
||
|
*> is the relative machine precision, but if TOL is supplied as
|
||
|
*> non-positive, then it is reset to eps*max( abs( u(i,j) ) ).
|
||
|
*> If JOB > 0 then TOL is not referenced.
|
||
|
*>
|
||
|
*> On exit, TOL is changed as described above, only if TOL is
|
||
|
*> non-positive on entry. Otherwise TOL is unchanged.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] INFO
|
||
|
*> \verbatim
|
||
|
*> INFO is INTEGER
|
||
|
*> = 0: successful exit
|
||
|
*> < 0: if INFO = -i, the i-th argument had an illegal value
|
||
|
*> > 0: overflow would occur when computing the INFO(th)
|
||
|
*> element of the solution vector x. This can only occur
|
||
|
*> when JOB is supplied as positive and either means
|
||
|
*> that a diagonal element of U is very small, or that
|
||
|
*> the elements of the right-hand side vector y are very
|
||
|
*> large.
|
||
|
*> \endverbatim
|
||
|
*
|
||
|
* Authors:
|
||
|
* ========
|
||
|
*
|
||
|
*> \author Univ. of Tennessee
|
||
|
*> \author Univ. of California Berkeley
|
||
|
*> \author Univ. of Colorado Denver
|
||
|
*> \author NAG Ltd.
|
||
|
*
|
||
|
*> \ingroup OTHERauxiliary
|
||
|
*
|
||
|
* =====================================================================
|
||
|
SUBROUTINE DLAGTS( JOB, N, A, B, C, D, IN, Y, TOL, INFO )
|
||
|
*
|
||
|
* -- LAPACK auxiliary routine --
|
||
|
* -- LAPACK is a software package provided by Univ. of Tennessee, --
|
||
|
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
||
|
*
|
||
|
* .. Scalar Arguments ..
|
||
|
INTEGER INFO, JOB, N
|
||
|
DOUBLE PRECISION TOL
|
||
|
* ..
|
||
|
* .. Array Arguments ..
|
||
|
INTEGER IN( * )
|
||
|
DOUBLE PRECISION A( * ), B( * ), C( * ), D( * ), Y( * )
|
||
|
* ..
|
||
|
*
|
||
|
* =====================================================================
|
||
|
*
|
||
|
* .. Parameters ..
|
||
|
DOUBLE PRECISION ONE, ZERO
|
||
|
PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0 )
|
||
|
* ..
|
||
|
* .. Local Scalars ..
|
||
|
INTEGER K
|
||
|
DOUBLE PRECISION ABSAK, AK, BIGNUM, EPS, PERT, SFMIN, TEMP
|
||
|
* ..
|
||
|
* .. Intrinsic Functions ..
|
||
|
INTRINSIC ABS, MAX, SIGN
|
||
|
* ..
|
||
|
* .. External Functions ..
|
||
|
DOUBLE PRECISION DLAMCH
|
||
|
EXTERNAL DLAMCH
|
||
|
* ..
|
||
|
* .. External Subroutines ..
|
||
|
EXTERNAL XERBLA
|
||
|
* ..
|
||
|
* .. Executable Statements ..
|
||
|
*
|
||
|
INFO = 0
|
||
|
IF( ( ABS( JOB ).GT.2 ) .OR. ( JOB.EQ.0 ) ) THEN
|
||
|
INFO = -1
|
||
|
ELSE IF( N.LT.0 ) THEN
|
||
|
INFO = -2
|
||
|
END IF
|
||
|
IF( INFO.NE.0 ) THEN
|
||
|
CALL XERBLA( 'DLAGTS', -INFO )
|
||
|
RETURN
|
||
|
END IF
|
||
|
*
|
||
|
IF( N.EQ.0 )
|
||
|
$ RETURN
|
||
|
*
|
||
|
EPS = DLAMCH( 'Epsilon' )
|
||
|
SFMIN = DLAMCH( 'Safe minimum' )
|
||
|
BIGNUM = ONE / SFMIN
|
||
|
*
|
||
|
IF( JOB.LT.0 ) THEN
|
||
|
IF( TOL.LE.ZERO ) THEN
|
||
|
TOL = ABS( A( 1 ) )
|
||
|
IF( N.GT.1 )
|
||
|
$ TOL = MAX( TOL, ABS( A( 2 ) ), ABS( B( 1 ) ) )
|
||
|
DO 10 K = 3, N
|
||
|
TOL = MAX( TOL, ABS( A( K ) ), ABS( B( K-1 ) ),
|
||
|
$ ABS( D( K-2 ) ) )
|
||
|
10 CONTINUE
|
||
|
TOL = TOL*EPS
|
||
|
IF( TOL.EQ.ZERO )
|
||
|
$ TOL = EPS
|
||
|
END IF
|
||
|
END IF
|
||
|
*
|
||
|
IF( ABS( JOB ).EQ.1 ) THEN
|
||
|
DO 20 K = 2, N
|
||
|
IF( IN( K-1 ).EQ.0 ) THEN
|
||
|
Y( K ) = Y( K ) - C( K-1 )*Y( K-1 )
|
||
|
ELSE
|
||
|
TEMP = Y( K-1 )
|
||
|
Y( K-1 ) = Y( K )
|
||
|
Y( K ) = TEMP - C( K-1 )*Y( K )
|
||
|
END IF
|
||
|
20 CONTINUE
|
||
|
IF( JOB.EQ.1 ) THEN
|
||
|
DO 30 K = N, 1, -1
|
||
|
IF( K.LE.N-2 ) THEN
|
||
|
TEMP = Y( K ) - B( K )*Y( K+1 ) - D( K )*Y( K+2 )
|
||
|
ELSE IF( K.EQ.N-1 ) THEN
|
||
|
TEMP = Y( K ) - B( K )*Y( K+1 )
|
||
|
ELSE
|
||
|
TEMP = Y( K )
|
||
|
END IF
|
||
|
AK = A( K )
|
||
|
ABSAK = ABS( AK )
|
||
|
IF( ABSAK.LT.ONE ) THEN
|
||
|
IF( ABSAK.LT.SFMIN ) THEN
|
||
|
IF( ABSAK.EQ.ZERO .OR. ABS( TEMP )*SFMIN.GT.ABSAK )
|
||
|
$ THEN
|
||
|
INFO = K
|
||
|
RETURN
|
||
|
ELSE
|
||
|
TEMP = TEMP*BIGNUM
|
||
|
AK = AK*BIGNUM
|
||
|
END IF
|
||
|
ELSE IF( ABS( TEMP ).GT.ABSAK*BIGNUM ) THEN
|
||
|
INFO = K
|
||
|
RETURN
|
||
|
END IF
|
||
|
END IF
|
||
|
Y( K ) = TEMP / AK
|
||
|
30 CONTINUE
|
||
|
ELSE
|
||
|
DO 50 K = N, 1, -1
|
||
|
IF( K.LE.N-2 ) THEN
|
||
|
TEMP = Y( K ) - B( K )*Y( K+1 ) - D( K )*Y( K+2 )
|
||
|
ELSE IF( K.EQ.N-1 ) THEN
|
||
|
TEMP = Y( K ) - B( K )*Y( K+1 )
|
||
|
ELSE
|
||
|
TEMP = Y( K )
|
||
|
END IF
|
||
|
AK = A( K )
|
||
|
PERT = SIGN( TOL, AK )
|
||
|
40 CONTINUE
|
||
|
ABSAK = ABS( AK )
|
||
|
IF( ABSAK.LT.ONE ) THEN
|
||
|
IF( ABSAK.LT.SFMIN ) THEN
|
||
|
IF( ABSAK.EQ.ZERO .OR. ABS( TEMP )*SFMIN.GT.ABSAK )
|
||
|
$ THEN
|
||
|
AK = AK + PERT
|
||
|
PERT = 2*PERT
|
||
|
GO TO 40
|
||
|
ELSE
|
||
|
TEMP = TEMP*BIGNUM
|
||
|
AK = AK*BIGNUM
|
||
|
END IF
|
||
|
ELSE IF( ABS( TEMP ).GT.ABSAK*BIGNUM ) THEN
|
||
|
AK = AK + PERT
|
||
|
PERT = 2*PERT
|
||
|
GO TO 40
|
||
|
END IF
|
||
|
END IF
|
||
|
Y( K ) = TEMP / AK
|
||
|
50 CONTINUE
|
||
|
END IF
|
||
|
ELSE
|
||
|
*
|
||
|
* Come to here if JOB = 2 or -2
|
||
|
*
|
||
|
IF( JOB.EQ.2 ) THEN
|
||
|
DO 60 K = 1, N
|
||
|
IF( K.GE.3 ) THEN
|
||
|
TEMP = Y( K ) - B( K-1 )*Y( K-1 ) - D( K-2 )*Y( K-2 )
|
||
|
ELSE IF( K.EQ.2 ) THEN
|
||
|
TEMP = Y( K ) - B( K-1 )*Y( K-1 )
|
||
|
ELSE
|
||
|
TEMP = Y( K )
|
||
|
END IF
|
||
|
AK = A( K )
|
||
|
ABSAK = ABS( AK )
|
||
|
IF( ABSAK.LT.ONE ) THEN
|
||
|
IF( ABSAK.LT.SFMIN ) THEN
|
||
|
IF( ABSAK.EQ.ZERO .OR. ABS( TEMP )*SFMIN.GT.ABSAK )
|
||
|
$ THEN
|
||
|
INFO = K
|
||
|
RETURN
|
||
|
ELSE
|
||
|
TEMP = TEMP*BIGNUM
|
||
|
AK = AK*BIGNUM
|
||
|
END IF
|
||
|
ELSE IF( ABS( TEMP ).GT.ABSAK*BIGNUM ) THEN
|
||
|
INFO = K
|
||
|
RETURN
|
||
|
END IF
|
||
|
END IF
|
||
|
Y( K ) = TEMP / AK
|
||
|
60 CONTINUE
|
||
|
ELSE
|
||
|
DO 80 K = 1, N
|
||
|
IF( K.GE.3 ) THEN
|
||
|
TEMP = Y( K ) - B( K-1 )*Y( K-1 ) - D( K-2 )*Y( K-2 )
|
||
|
ELSE IF( K.EQ.2 ) THEN
|
||
|
TEMP = Y( K ) - B( K-1 )*Y( K-1 )
|
||
|
ELSE
|
||
|
TEMP = Y( K )
|
||
|
END IF
|
||
|
AK = A( K )
|
||
|
PERT = SIGN( TOL, AK )
|
||
|
70 CONTINUE
|
||
|
ABSAK = ABS( AK )
|
||
|
IF( ABSAK.LT.ONE ) THEN
|
||
|
IF( ABSAK.LT.SFMIN ) THEN
|
||
|
IF( ABSAK.EQ.ZERO .OR. ABS( TEMP )*SFMIN.GT.ABSAK )
|
||
|
$ THEN
|
||
|
AK = AK + PERT
|
||
|
PERT = 2*PERT
|
||
|
GO TO 70
|
||
|
ELSE
|
||
|
TEMP = TEMP*BIGNUM
|
||
|
AK = AK*BIGNUM
|
||
|
END IF
|
||
|
ELSE IF( ABS( TEMP ).GT.ABSAK*BIGNUM ) THEN
|
||
|
AK = AK + PERT
|
||
|
PERT = 2*PERT
|
||
|
GO TO 70
|
||
|
END IF
|
||
|
END IF
|
||
|
Y( K ) = TEMP / AK
|
||
|
80 CONTINUE
|
||
|
END IF
|
||
|
*
|
||
|
DO 90 K = N, 2, -1
|
||
|
IF( IN( K-1 ).EQ.0 ) THEN
|
||
|
Y( K-1 ) = Y( K-1 ) - C( K-1 )*Y( K )
|
||
|
ELSE
|
||
|
TEMP = Y( K-1 )
|
||
|
Y( K-1 ) = Y( K )
|
||
|
Y( K ) = TEMP - C( K-1 )*Y( K )
|
||
|
END IF
|
||
|
90 CONTINUE
|
||
|
END IF
|
||
|
*
|
||
|
* End of DLAGTS
|
||
|
*
|
||
|
END
|