You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
681 lines
20 KiB
681 lines
20 KiB
2 years ago
|
*> \brief \b DLAQR2 performs the orthogonal similarity transformation of a Hessenberg matrix to detect and deflate fully converged eigenvalues from a trailing principal submatrix (aggressive early deflation).
|
||
|
*
|
||
|
* =========== DOCUMENTATION ===========
|
||
|
*
|
||
|
* Online html documentation available at
|
||
|
* http://www.netlib.org/lapack/explore-html/
|
||
|
*
|
||
|
*> \htmlonly
|
||
|
*> Download DLAQR2 + dependencies
|
||
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlaqr2.f">
|
||
|
*> [TGZ]</a>
|
||
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlaqr2.f">
|
||
|
*> [ZIP]</a>
|
||
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlaqr2.f">
|
||
|
*> [TXT]</a>
|
||
|
*> \endhtmlonly
|
||
|
*
|
||
|
* Definition:
|
||
|
* ===========
|
||
|
*
|
||
|
* SUBROUTINE DLAQR2( WANTT, WANTZ, N, KTOP, KBOT, NW, H, LDH, ILOZ,
|
||
|
* IHIZ, Z, LDZ, NS, ND, SR, SI, V, LDV, NH, T,
|
||
|
* LDT, NV, WV, LDWV, WORK, LWORK )
|
||
|
*
|
||
|
* .. Scalar Arguments ..
|
||
|
* INTEGER IHIZ, ILOZ, KBOT, KTOP, LDH, LDT, LDV, LDWV,
|
||
|
* $ LDZ, LWORK, N, ND, NH, NS, NV, NW
|
||
|
* LOGICAL WANTT, WANTZ
|
||
|
* ..
|
||
|
* .. Array Arguments ..
|
||
|
* DOUBLE PRECISION H( LDH, * ), SI( * ), SR( * ), T( LDT, * ),
|
||
|
* $ V( LDV, * ), WORK( * ), WV( LDWV, * ),
|
||
|
* $ Z( LDZ, * )
|
||
|
* ..
|
||
|
*
|
||
|
*
|
||
|
*> \par Purpose:
|
||
|
* =============
|
||
|
*>
|
||
|
*> \verbatim
|
||
|
*>
|
||
|
*> DLAQR2 is identical to DLAQR3 except that it avoids
|
||
|
*> recursion by calling DLAHQR instead of DLAQR4.
|
||
|
*>
|
||
|
*> Aggressive early deflation:
|
||
|
*>
|
||
|
*> This subroutine accepts as input an upper Hessenberg matrix
|
||
|
*> H and performs an orthogonal similarity transformation
|
||
|
*> designed to detect and deflate fully converged eigenvalues from
|
||
|
*> a trailing principal submatrix. On output H has been over-
|
||
|
*> written by a new Hessenberg matrix that is a perturbation of
|
||
|
*> an orthogonal similarity transformation of H. It is to be
|
||
|
*> hoped that the final version of H has many zero subdiagonal
|
||
|
*> entries.
|
||
|
*> \endverbatim
|
||
|
*
|
||
|
* Arguments:
|
||
|
* ==========
|
||
|
*
|
||
|
*> \param[in] WANTT
|
||
|
*> \verbatim
|
||
|
*> WANTT is LOGICAL
|
||
|
*> If .TRUE., then the Hessenberg matrix H is fully updated
|
||
|
*> so that the quasi-triangular Schur factor may be
|
||
|
*> computed (in cooperation with the calling subroutine).
|
||
|
*> If .FALSE., then only enough of H is updated to preserve
|
||
|
*> the eigenvalues.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] WANTZ
|
||
|
*> \verbatim
|
||
|
*> WANTZ is LOGICAL
|
||
|
*> If .TRUE., then the orthogonal matrix Z is updated so
|
||
|
*> so that the orthogonal Schur factor may be computed
|
||
|
*> (in cooperation with the calling subroutine).
|
||
|
*> If .FALSE., then Z is not referenced.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] N
|
||
|
*> \verbatim
|
||
|
*> N is INTEGER
|
||
|
*> The order of the matrix H and (if WANTZ is .TRUE.) the
|
||
|
*> order of the orthogonal matrix Z.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] KTOP
|
||
|
*> \verbatim
|
||
|
*> KTOP is INTEGER
|
||
|
*> It is assumed that either KTOP = 1 or H(KTOP,KTOP-1)=0.
|
||
|
*> KBOT and KTOP together determine an isolated block
|
||
|
*> along the diagonal of the Hessenberg matrix.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] KBOT
|
||
|
*> \verbatim
|
||
|
*> KBOT is INTEGER
|
||
|
*> It is assumed without a check that either
|
||
|
*> KBOT = N or H(KBOT+1,KBOT)=0. KBOT and KTOP together
|
||
|
*> determine an isolated block along the diagonal of the
|
||
|
*> Hessenberg matrix.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] NW
|
||
|
*> \verbatim
|
||
|
*> NW is INTEGER
|
||
|
*> Deflation window size. 1 <= NW <= (KBOT-KTOP+1).
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in,out] H
|
||
|
*> \verbatim
|
||
|
*> H is DOUBLE PRECISION array, dimension (LDH,N)
|
||
|
*> On input the initial N-by-N section of H stores the
|
||
|
*> Hessenberg matrix undergoing aggressive early deflation.
|
||
|
*> On output H has been transformed by an orthogonal
|
||
|
*> similarity transformation, perturbed, and the returned
|
||
|
*> to Hessenberg form that (it is to be hoped) has some
|
||
|
*> zero subdiagonal entries.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] LDH
|
||
|
*> \verbatim
|
||
|
*> LDH is INTEGER
|
||
|
*> Leading dimension of H just as declared in the calling
|
||
|
*> subroutine. N <= LDH
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] ILOZ
|
||
|
*> \verbatim
|
||
|
*> ILOZ is INTEGER
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] IHIZ
|
||
|
*> \verbatim
|
||
|
*> IHIZ is INTEGER
|
||
|
*> Specify the rows of Z to which transformations must be
|
||
|
*> applied if WANTZ is .TRUE.. 1 <= ILOZ <= IHIZ <= N.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in,out] Z
|
||
|
*> \verbatim
|
||
|
*> Z is DOUBLE PRECISION array, dimension (LDZ,N)
|
||
|
*> IF WANTZ is .TRUE., then on output, the orthogonal
|
||
|
*> similarity transformation mentioned above has been
|
||
|
*> accumulated into Z(ILOZ:IHIZ,ILOZ:IHIZ) from the right.
|
||
|
*> If WANTZ is .FALSE., then Z is unreferenced.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] LDZ
|
||
|
*> \verbatim
|
||
|
*> LDZ is INTEGER
|
||
|
*> The leading dimension of Z just as declared in the
|
||
|
*> calling subroutine. 1 <= LDZ.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] NS
|
||
|
*> \verbatim
|
||
|
*> NS is INTEGER
|
||
|
*> The number of unconverged (ie approximate) eigenvalues
|
||
|
*> returned in SR and SI that may be used as shifts by the
|
||
|
*> calling subroutine.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] ND
|
||
|
*> \verbatim
|
||
|
*> ND is INTEGER
|
||
|
*> The number of converged eigenvalues uncovered by this
|
||
|
*> subroutine.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] SR
|
||
|
*> \verbatim
|
||
|
*> SR is DOUBLE PRECISION array, dimension (KBOT)
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] SI
|
||
|
*> \verbatim
|
||
|
*> SI is DOUBLE PRECISION array, dimension (KBOT)
|
||
|
*> On output, the real and imaginary parts of approximate
|
||
|
*> eigenvalues that may be used for shifts are stored in
|
||
|
*> SR(KBOT-ND-NS+1) through SR(KBOT-ND) and
|
||
|
*> SI(KBOT-ND-NS+1) through SI(KBOT-ND), respectively.
|
||
|
*> The real and imaginary parts of converged eigenvalues
|
||
|
*> are stored in SR(KBOT-ND+1) through SR(KBOT) and
|
||
|
*> SI(KBOT-ND+1) through SI(KBOT), respectively.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] V
|
||
|
*> \verbatim
|
||
|
*> V is DOUBLE PRECISION array, dimension (LDV,NW)
|
||
|
*> An NW-by-NW work array.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] LDV
|
||
|
*> \verbatim
|
||
|
*> LDV is INTEGER
|
||
|
*> The leading dimension of V just as declared in the
|
||
|
*> calling subroutine. NW <= LDV
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] NH
|
||
|
*> \verbatim
|
||
|
*> NH is INTEGER
|
||
|
*> The number of columns of T. NH >= NW.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] T
|
||
|
*> \verbatim
|
||
|
*> T is DOUBLE PRECISION array, dimension (LDT,NW)
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] LDT
|
||
|
*> \verbatim
|
||
|
*> LDT is INTEGER
|
||
|
*> The leading dimension of T just as declared in the
|
||
|
*> calling subroutine. NW <= LDT
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] NV
|
||
|
*> \verbatim
|
||
|
*> NV is INTEGER
|
||
|
*> The number of rows of work array WV available for
|
||
|
*> workspace. NV >= NW.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] WV
|
||
|
*> \verbatim
|
||
|
*> WV is DOUBLE PRECISION array, dimension (LDWV,NW)
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] LDWV
|
||
|
*> \verbatim
|
||
|
*> LDWV is INTEGER
|
||
|
*> The leading dimension of W just as declared in the
|
||
|
*> calling subroutine. NW <= LDV
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] WORK
|
||
|
*> \verbatim
|
||
|
*> WORK is DOUBLE PRECISION array, dimension (LWORK)
|
||
|
*> On exit, WORK(1) is set to an estimate of the optimal value
|
||
|
*> of LWORK for the given values of N, NW, KTOP and KBOT.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] LWORK
|
||
|
*> \verbatim
|
||
|
*> LWORK is INTEGER
|
||
|
*> The dimension of the work array WORK. LWORK = 2*NW
|
||
|
*> suffices, but greater efficiency may result from larger
|
||
|
*> values of LWORK.
|
||
|
*>
|
||
|
*> If LWORK = -1, then a workspace query is assumed; DLAQR2
|
||
|
*> only estimates the optimal workspace size for the given
|
||
|
*> values of N, NW, KTOP and KBOT. The estimate is returned
|
||
|
*> in WORK(1). No error message related to LWORK is issued
|
||
|
*> by XERBLA. Neither H nor Z are accessed.
|
||
|
*> \endverbatim
|
||
|
*
|
||
|
* Authors:
|
||
|
* ========
|
||
|
*
|
||
|
*> \author Univ. of Tennessee
|
||
|
*> \author Univ. of California Berkeley
|
||
|
*> \author Univ. of Colorado Denver
|
||
|
*> \author NAG Ltd.
|
||
|
*
|
||
|
*> \ingroup doubleOTHERauxiliary
|
||
|
*
|
||
|
*> \par Contributors:
|
||
|
* ==================
|
||
|
*>
|
||
|
*> Karen Braman and Ralph Byers, Department of Mathematics,
|
||
|
*> University of Kansas, USA
|
||
|
*>
|
||
|
* =====================================================================
|
||
|
SUBROUTINE DLAQR2( WANTT, WANTZ, N, KTOP, KBOT, NW, H, LDH, ILOZ,
|
||
|
$ IHIZ, Z, LDZ, NS, ND, SR, SI, V, LDV, NH, T,
|
||
|
$ LDT, NV, WV, LDWV, WORK, LWORK )
|
||
|
*
|
||
|
* -- LAPACK auxiliary routine --
|
||
|
* -- LAPACK is a software package provided by Univ. of Tennessee, --
|
||
|
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
||
|
*
|
||
|
* .. Scalar Arguments ..
|
||
|
INTEGER IHIZ, ILOZ, KBOT, KTOP, LDH, LDT, LDV, LDWV,
|
||
|
$ LDZ, LWORK, N, ND, NH, NS, NV, NW
|
||
|
LOGICAL WANTT, WANTZ
|
||
|
* ..
|
||
|
* .. Array Arguments ..
|
||
|
DOUBLE PRECISION H( LDH, * ), SI( * ), SR( * ), T( LDT, * ),
|
||
|
$ V( LDV, * ), WORK( * ), WV( LDWV, * ),
|
||
|
$ Z( LDZ, * )
|
||
|
* ..
|
||
|
*
|
||
|
* ================================================================
|
||
|
* .. Parameters ..
|
||
|
DOUBLE PRECISION ZERO, ONE
|
||
|
PARAMETER ( ZERO = 0.0d0, ONE = 1.0d0 )
|
||
|
* ..
|
||
|
* .. Local Scalars ..
|
||
|
DOUBLE PRECISION AA, BB, BETA, CC, CS, DD, EVI, EVK, FOO, S,
|
||
|
$ SAFMAX, SAFMIN, SMLNUM, SN, TAU, ULP
|
||
|
INTEGER I, IFST, ILST, INFO, INFQR, J, JW, K, KCOL,
|
||
|
$ KEND, KLN, KROW, KWTOP, LTOP, LWK1, LWK2,
|
||
|
$ LWKOPT
|
||
|
LOGICAL BULGE, SORTED
|
||
|
* ..
|
||
|
* .. External Functions ..
|
||
|
DOUBLE PRECISION DLAMCH
|
||
|
EXTERNAL DLAMCH
|
||
|
* ..
|
||
|
* .. External Subroutines ..
|
||
|
EXTERNAL DCOPY, DGEHRD, DGEMM, DLACPY, DLAHQR,
|
||
|
$ DLANV2, DLARF, DLARFG, DLASET, DORMHR, DTREXC
|
||
|
* ..
|
||
|
* .. Intrinsic Functions ..
|
||
|
INTRINSIC ABS, DBLE, INT, MAX, MIN, SQRT
|
||
|
* ..
|
||
|
* .. Executable Statements ..
|
||
|
*
|
||
|
* ==== Estimate optimal workspace. ====
|
||
|
*
|
||
|
JW = MIN( NW, KBOT-KTOP+1 )
|
||
|
IF( JW.LE.2 ) THEN
|
||
|
LWKOPT = 1
|
||
|
ELSE
|
||
|
*
|
||
|
* ==== Workspace query call to DGEHRD ====
|
||
|
*
|
||
|
CALL DGEHRD( JW, 1, JW-1, T, LDT, WORK, WORK, -1, INFO )
|
||
|
LWK1 = INT( WORK( 1 ) )
|
||
|
*
|
||
|
* ==== Workspace query call to DORMHR ====
|
||
|
*
|
||
|
CALL DORMHR( 'R', 'N', JW, JW, 1, JW-1, T, LDT, WORK, V, LDV,
|
||
|
$ WORK, -1, INFO )
|
||
|
LWK2 = INT( WORK( 1 ) )
|
||
|
*
|
||
|
* ==== Optimal workspace ====
|
||
|
*
|
||
|
LWKOPT = JW + MAX( LWK1, LWK2 )
|
||
|
END IF
|
||
|
*
|
||
|
* ==== Quick return in case of workspace query. ====
|
||
|
*
|
||
|
IF( LWORK.EQ.-1 ) THEN
|
||
|
WORK( 1 ) = DBLE( LWKOPT )
|
||
|
RETURN
|
||
|
END IF
|
||
|
*
|
||
|
* ==== Nothing to do ...
|
||
|
* ... for an empty active block ... ====
|
||
|
NS = 0
|
||
|
ND = 0
|
||
|
WORK( 1 ) = ONE
|
||
|
IF( KTOP.GT.KBOT )
|
||
|
$ RETURN
|
||
|
* ... nor for an empty deflation window. ====
|
||
|
IF( NW.LT.1 )
|
||
|
$ RETURN
|
||
|
*
|
||
|
* ==== Machine constants ====
|
||
|
*
|
||
|
SAFMIN = DLAMCH( 'SAFE MINIMUM' )
|
||
|
SAFMAX = ONE / SAFMIN
|
||
|
ULP = DLAMCH( 'PRECISION' )
|
||
|
SMLNUM = SAFMIN*( DBLE( N ) / ULP )
|
||
|
*
|
||
|
* ==== Setup deflation window ====
|
||
|
*
|
||
|
JW = MIN( NW, KBOT-KTOP+1 )
|
||
|
KWTOP = KBOT - JW + 1
|
||
|
IF( KWTOP.EQ.KTOP ) THEN
|
||
|
S = ZERO
|
||
|
ELSE
|
||
|
S = H( KWTOP, KWTOP-1 )
|
||
|
END IF
|
||
|
*
|
||
|
IF( KBOT.EQ.KWTOP ) THEN
|
||
|
*
|
||
|
* ==== 1-by-1 deflation window: not much to do ====
|
||
|
*
|
||
|
SR( KWTOP ) = H( KWTOP, KWTOP )
|
||
|
SI( KWTOP ) = ZERO
|
||
|
NS = 1
|
||
|
ND = 0
|
||
|
IF( ABS( S ).LE.MAX( SMLNUM, ULP*ABS( H( KWTOP, KWTOP ) ) ) )
|
||
|
$ THEN
|
||
|
NS = 0
|
||
|
ND = 1
|
||
|
IF( KWTOP.GT.KTOP )
|
||
|
$ H( KWTOP, KWTOP-1 ) = ZERO
|
||
|
END IF
|
||
|
WORK( 1 ) = ONE
|
||
|
RETURN
|
||
|
END IF
|
||
|
*
|
||
|
* ==== Convert to spike-triangular form. (In case of a
|
||
|
* . rare QR failure, this routine continues to do
|
||
|
* . aggressive early deflation using that part of
|
||
|
* . the deflation window that converged using INFQR
|
||
|
* . here and there to keep track.) ====
|
||
|
*
|
||
|
CALL DLACPY( 'U', JW, JW, H( KWTOP, KWTOP ), LDH, T, LDT )
|
||
|
CALL DCOPY( JW-1, H( KWTOP+1, KWTOP ), LDH+1, T( 2, 1 ), LDT+1 )
|
||
|
*
|
||
|
CALL DLASET( 'A', JW, JW, ZERO, ONE, V, LDV )
|
||
|
CALL DLAHQR( .true., .true., JW, 1, JW, T, LDT, SR( KWTOP ),
|
||
|
$ SI( KWTOP ), 1, JW, V, LDV, INFQR )
|
||
|
*
|
||
|
* ==== DTREXC needs a clean margin near the diagonal ====
|
||
|
*
|
||
|
DO 10 J = 1, JW - 3
|
||
|
T( J+2, J ) = ZERO
|
||
|
T( J+3, J ) = ZERO
|
||
|
10 CONTINUE
|
||
|
IF( JW.GT.2 )
|
||
|
$ T( JW, JW-2 ) = ZERO
|
||
|
*
|
||
|
* ==== Deflation detection loop ====
|
||
|
*
|
||
|
NS = JW
|
||
|
ILST = INFQR + 1
|
||
|
20 CONTINUE
|
||
|
IF( ILST.LE.NS ) THEN
|
||
|
IF( NS.EQ.1 ) THEN
|
||
|
BULGE = .FALSE.
|
||
|
ELSE
|
||
|
BULGE = T( NS, NS-1 ).NE.ZERO
|
||
|
END IF
|
||
|
*
|
||
|
* ==== Small spike tip test for deflation ====
|
||
|
*
|
||
|
IF( .NOT.BULGE ) THEN
|
||
|
*
|
||
|
* ==== Real eigenvalue ====
|
||
|
*
|
||
|
FOO = ABS( T( NS, NS ) )
|
||
|
IF( FOO.EQ.ZERO )
|
||
|
$ FOO = ABS( S )
|
||
|
IF( ABS( S*V( 1, NS ) ).LE.MAX( SMLNUM, ULP*FOO ) ) THEN
|
||
|
*
|
||
|
* ==== Deflatable ====
|
||
|
*
|
||
|
NS = NS - 1
|
||
|
ELSE
|
||
|
*
|
||
|
* ==== Undeflatable. Move it up out of the way.
|
||
|
* . (DTREXC can not fail in this case.) ====
|
||
|
*
|
||
|
IFST = NS
|
||
|
CALL DTREXC( 'V', JW, T, LDT, V, LDV, IFST, ILST, WORK,
|
||
|
$ INFO )
|
||
|
ILST = ILST + 1
|
||
|
END IF
|
||
|
ELSE
|
||
|
*
|
||
|
* ==== Complex conjugate pair ====
|
||
|
*
|
||
|
FOO = ABS( T( NS, NS ) ) + SQRT( ABS( T( NS, NS-1 ) ) )*
|
||
|
$ SQRT( ABS( T( NS-1, NS ) ) )
|
||
|
IF( FOO.EQ.ZERO )
|
||
|
$ FOO = ABS( S )
|
||
|
IF( MAX( ABS( S*V( 1, NS ) ), ABS( S*V( 1, NS-1 ) ) ).LE.
|
||
|
$ MAX( SMLNUM, ULP*FOO ) ) THEN
|
||
|
*
|
||
|
* ==== Deflatable ====
|
||
|
*
|
||
|
NS = NS - 2
|
||
|
ELSE
|
||
|
*
|
||
|
* ==== Undeflatable. Move them up out of the way.
|
||
|
* . Fortunately, DTREXC does the right thing with
|
||
|
* . ILST in case of a rare exchange failure. ====
|
||
|
*
|
||
|
IFST = NS
|
||
|
CALL DTREXC( 'V', JW, T, LDT, V, LDV, IFST, ILST, WORK,
|
||
|
$ INFO )
|
||
|
ILST = ILST + 2
|
||
|
END IF
|
||
|
END IF
|
||
|
*
|
||
|
* ==== End deflation detection loop ====
|
||
|
*
|
||
|
GO TO 20
|
||
|
END IF
|
||
|
*
|
||
|
* ==== Return to Hessenberg form ====
|
||
|
*
|
||
|
IF( NS.EQ.0 )
|
||
|
$ S = ZERO
|
||
|
*
|
||
|
IF( NS.LT.JW ) THEN
|
||
|
*
|
||
|
* ==== sorting diagonal blocks of T improves accuracy for
|
||
|
* . graded matrices. Bubble sort deals well with
|
||
|
* . exchange failures. ====
|
||
|
*
|
||
|
SORTED = .false.
|
||
|
I = NS + 1
|
||
|
30 CONTINUE
|
||
|
IF( SORTED )
|
||
|
$ GO TO 50
|
||
|
SORTED = .true.
|
||
|
*
|
||
|
KEND = I - 1
|
||
|
I = INFQR + 1
|
||
|
IF( I.EQ.NS ) THEN
|
||
|
K = I + 1
|
||
|
ELSE IF( T( I+1, I ).EQ.ZERO ) THEN
|
||
|
K = I + 1
|
||
|
ELSE
|
||
|
K = I + 2
|
||
|
END IF
|
||
|
40 CONTINUE
|
||
|
IF( K.LE.KEND ) THEN
|
||
|
IF( K.EQ.I+1 ) THEN
|
||
|
EVI = ABS( T( I, I ) )
|
||
|
ELSE
|
||
|
EVI = ABS( T( I, I ) ) + SQRT( ABS( T( I+1, I ) ) )*
|
||
|
$ SQRT( ABS( T( I, I+1 ) ) )
|
||
|
END IF
|
||
|
*
|
||
|
IF( K.EQ.KEND ) THEN
|
||
|
EVK = ABS( T( K, K ) )
|
||
|
ELSE IF( T( K+1, K ).EQ.ZERO ) THEN
|
||
|
EVK = ABS( T( K, K ) )
|
||
|
ELSE
|
||
|
EVK = ABS( T( K, K ) ) + SQRT( ABS( T( K+1, K ) ) )*
|
||
|
$ SQRT( ABS( T( K, K+1 ) ) )
|
||
|
END IF
|
||
|
*
|
||
|
IF( EVI.GE.EVK ) THEN
|
||
|
I = K
|
||
|
ELSE
|
||
|
SORTED = .false.
|
||
|
IFST = I
|
||
|
ILST = K
|
||
|
CALL DTREXC( 'V', JW, T, LDT, V, LDV, IFST, ILST, WORK,
|
||
|
$ INFO )
|
||
|
IF( INFO.EQ.0 ) THEN
|
||
|
I = ILST
|
||
|
ELSE
|
||
|
I = K
|
||
|
END IF
|
||
|
END IF
|
||
|
IF( I.EQ.KEND ) THEN
|
||
|
K = I + 1
|
||
|
ELSE IF( T( I+1, I ).EQ.ZERO ) THEN
|
||
|
K = I + 1
|
||
|
ELSE
|
||
|
K = I + 2
|
||
|
END IF
|
||
|
GO TO 40
|
||
|
END IF
|
||
|
GO TO 30
|
||
|
50 CONTINUE
|
||
|
END IF
|
||
|
*
|
||
|
* ==== Restore shift/eigenvalue array from T ====
|
||
|
*
|
||
|
I = JW
|
||
|
60 CONTINUE
|
||
|
IF( I.GE.INFQR+1 ) THEN
|
||
|
IF( I.EQ.INFQR+1 ) THEN
|
||
|
SR( KWTOP+I-1 ) = T( I, I )
|
||
|
SI( KWTOP+I-1 ) = ZERO
|
||
|
I = I - 1
|
||
|
ELSE IF( T( I, I-1 ).EQ.ZERO ) THEN
|
||
|
SR( KWTOP+I-1 ) = T( I, I )
|
||
|
SI( KWTOP+I-1 ) = ZERO
|
||
|
I = I - 1
|
||
|
ELSE
|
||
|
AA = T( I-1, I-1 )
|
||
|
CC = T( I, I-1 )
|
||
|
BB = T( I-1, I )
|
||
|
DD = T( I, I )
|
||
|
CALL DLANV2( AA, BB, CC, DD, SR( KWTOP+I-2 ),
|
||
|
$ SI( KWTOP+I-2 ), SR( KWTOP+I-1 ),
|
||
|
$ SI( KWTOP+I-1 ), CS, SN )
|
||
|
I = I - 2
|
||
|
END IF
|
||
|
GO TO 60
|
||
|
END IF
|
||
|
*
|
||
|
IF( NS.LT.JW .OR. S.EQ.ZERO ) THEN
|
||
|
IF( NS.GT.1 .AND. S.NE.ZERO ) THEN
|
||
|
*
|
||
|
* ==== Reflect spike back into lower triangle ====
|
||
|
*
|
||
|
CALL DCOPY( NS, V, LDV, WORK, 1 )
|
||
|
BETA = WORK( 1 )
|
||
|
CALL DLARFG( NS, BETA, WORK( 2 ), 1, TAU )
|
||
|
WORK( 1 ) = ONE
|
||
|
*
|
||
|
CALL DLASET( 'L', JW-2, JW-2, ZERO, ZERO, T( 3, 1 ), LDT )
|
||
|
*
|
||
|
CALL DLARF( 'L', NS, JW, WORK, 1, TAU, T, LDT,
|
||
|
$ WORK( JW+1 ) )
|
||
|
CALL DLARF( 'R', NS, NS, WORK, 1, TAU, T, LDT,
|
||
|
$ WORK( JW+1 ) )
|
||
|
CALL DLARF( 'R', JW, NS, WORK, 1, TAU, V, LDV,
|
||
|
$ WORK( JW+1 ) )
|
||
|
*
|
||
|
CALL DGEHRD( JW, 1, NS, T, LDT, WORK, WORK( JW+1 ),
|
||
|
$ LWORK-JW, INFO )
|
||
|
END IF
|
||
|
*
|
||
|
* ==== Copy updated reduced window into place ====
|
||
|
*
|
||
|
IF( KWTOP.GT.1 )
|
||
|
$ H( KWTOP, KWTOP-1 ) = S*V( 1, 1 )
|
||
|
CALL DLACPY( 'U', JW, JW, T, LDT, H( KWTOP, KWTOP ), LDH )
|
||
|
CALL DCOPY( JW-1, T( 2, 1 ), LDT+1, H( KWTOP+1, KWTOP ),
|
||
|
$ LDH+1 )
|
||
|
*
|
||
|
* ==== Accumulate orthogonal matrix in order update
|
||
|
* . H and Z, if requested. ====
|
||
|
*
|
||
|
IF( NS.GT.1 .AND. S.NE.ZERO )
|
||
|
$ CALL DORMHR( 'R', 'N', JW, NS, 1, NS, T, LDT, WORK, V, LDV,
|
||
|
$ WORK( JW+1 ), LWORK-JW, INFO )
|
||
|
*
|
||
|
* ==== Update vertical slab in H ====
|
||
|
*
|
||
|
IF( WANTT ) THEN
|
||
|
LTOP = 1
|
||
|
ELSE
|
||
|
LTOP = KTOP
|
||
|
END IF
|
||
|
DO 70 KROW = LTOP, KWTOP - 1, NV
|
||
|
KLN = MIN( NV, KWTOP-KROW )
|
||
|
CALL DGEMM( 'N', 'N', KLN, JW, JW, ONE, H( KROW, KWTOP ),
|
||
|
$ LDH, V, LDV, ZERO, WV, LDWV )
|
||
|
CALL DLACPY( 'A', KLN, JW, WV, LDWV, H( KROW, KWTOP ), LDH )
|
||
|
70 CONTINUE
|
||
|
*
|
||
|
* ==== Update horizontal slab in H ====
|
||
|
*
|
||
|
IF( WANTT ) THEN
|
||
|
DO 80 KCOL = KBOT + 1, N, NH
|
||
|
KLN = MIN( NH, N-KCOL+1 )
|
||
|
CALL DGEMM( 'C', 'N', JW, KLN, JW, ONE, V, LDV,
|
||
|
$ H( KWTOP, KCOL ), LDH, ZERO, T, LDT )
|
||
|
CALL DLACPY( 'A', JW, KLN, T, LDT, H( KWTOP, KCOL ),
|
||
|
$ LDH )
|
||
|
80 CONTINUE
|
||
|
END IF
|
||
|
*
|
||
|
* ==== Update vertical slab in Z ====
|
||
|
*
|
||
|
IF( WANTZ ) THEN
|
||
|
DO 90 KROW = ILOZ, IHIZ, NV
|
||
|
KLN = MIN( NV, IHIZ-KROW+1 )
|
||
|
CALL DGEMM( 'N', 'N', KLN, JW, JW, ONE, Z( KROW, KWTOP ),
|
||
|
$ LDZ, V, LDV, ZERO, WV, LDWV )
|
||
|
CALL DLACPY( 'A', KLN, JW, WV, LDWV, Z( KROW, KWTOP ),
|
||
|
$ LDZ )
|
||
|
90 CONTINUE
|
||
|
END IF
|
||
|
END IF
|
||
|
*
|
||
|
* ==== Return the number of deflations ... ====
|
||
|
*
|
||
|
ND = JW - NS
|
||
|
*
|
||
|
* ==== ... and the number of shifts. (Subtracting
|
||
|
* . INFQR from the spike length takes care
|
||
|
* . of the case of a rare QR failure while
|
||
|
* . calculating eigenvalues of the deflation
|
||
|
* . window.) ====
|
||
|
*
|
||
|
NS = NS - INFQR
|
||
|
*
|
||
|
* ==== Return optimal workspace. ====
|
||
|
*
|
||
|
WORK( 1 ) = DBLE( LWKOPT )
|
||
|
*
|
||
|
* ==== End of DLAQR2 ====
|
||
|
*
|
||
|
END
|