You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
321 lines
10 KiB
321 lines
10 KiB
2 years ago
|
*> \brief \b DLATDF uses the LU factorization of the n-by-n matrix computed by sgetc2 and computes a contribution to the reciprocal Dif-estimate.
|
||
|
*
|
||
|
* =========== DOCUMENTATION ===========
|
||
|
*
|
||
|
* Online html documentation available at
|
||
|
* http://www.netlib.org/lapack/explore-html/
|
||
|
*
|
||
|
*> \htmlonly
|
||
|
*> Download DLATDF + dependencies
|
||
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlatdf.f">
|
||
|
*> [TGZ]</a>
|
||
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlatdf.f">
|
||
|
*> [ZIP]</a>
|
||
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlatdf.f">
|
||
|
*> [TXT]</a>
|
||
|
*> \endhtmlonly
|
||
|
*
|
||
|
* Definition:
|
||
|
* ===========
|
||
|
*
|
||
|
* SUBROUTINE DLATDF( IJOB, N, Z, LDZ, RHS, RDSUM, RDSCAL, IPIV,
|
||
|
* JPIV )
|
||
|
*
|
||
|
* .. Scalar Arguments ..
|
||
|
* INTEGER IJOB, LDZ, N
|
||
|
* DOUBLE PRECISION RDSCAL, RDSUM
|
||
|
* ..
|
||
|
* .. Array Arguments ..
|
||
|
* INTEGER IPIV( * ), JPIV( * )
|
||
|
* DOUBLE PRECISION RHS( * ), Z( LDZ, * )
|
||
|
* ..
|
||
|
*
|
||
|
*
|
||
|
*> \par Purpose:
|
||
|
* =============
|
||
|
*>
|
||
|
*> \verbatim
|
||
|
*>
|
||
|
*> DLATDF uses the LU factorization of the n-by-n matrix Z computed by
|
||
|
*> DGETC2 and computes a contribution to the reciprocal Dif-estimate
|
||
|
*> by solving Z * x = b for x, and choosing the r.h.s. b such that
|
||
|
*> the norm of x is as large as possible. On entry RHS = b holds the
|
||
|
*> contribution from earlier solved sub-systems, and on return RHS = x.
|
||
|
*>
|
||
|
*> The factorization of Z returned by DGETC2 has the form Z = P*L*U*Q,
|
||
|
*> where P and Q are permutation matrices. L is lower triangular with
|
||
|
*> unit diagonal elements and U is upper triangular.
|
||
|
*> \endverbatim
|
||
|
*
|
||
|
* Arguments:
|
||
|
* ==========
|
||
|
*
|
||
|
*> \param[in] IJOB
|
||
|
*> \verbatim
|
||
|
*> IJOB is INTEGER
|
||
|
*> IJOB = 2: First compute an approximative null-vector e
|
||
|
*> of Z using DGECON, e is normalized and solve for
|
||
|
*> Zx = +-e - f with the sign giving the greater value
|
||
|
*> of 2-norm(x). About 5 times as expensive as Default.
|
||
|
*> IJOB .ne. 2: Local look ahead strategy where all entries of
|
||
|
*> the r.h.s. b is chosen as either +1 or -1 (Default).
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] N
|
||
|
*> \verbatim
|
||
|
*> N is INTEGER
|
||
|
*> The number of columns of the matrix Z.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] Z
|
||
|
*> \verbatim
|
||
|
*> Z is DOUBLE PRECISION array, dimension (LDZ, N)
|
||
|
*> On entry, the LU part of the factorization of the n-by-n
|
||
|
*> matrix Z computed by DGETC2: Z = P * L * U * Q
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] LDZ
|
||
|
*> \verbatim
|
||
|
*> LDZ is INTEGER
|
||
|
*> The leading dimension of the array Z. LDA >= max(1, N).
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in,out] RHS
|
||
|
*> \verbatim
|
||
|
*> RHS is DOUBLE PRECISION array, dimension (N)
|
||
|
*> On entry, RHS contains contributions from other subsystems.
|
||
|
*> On exit, RHS contains the solution of the subsystem with
|
||
|
*> entries according to the value of IJOB (see above).
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in,out] RDSUM
|
||
|
*> \verbatim
|
||
|
*> RDSUM is DOUBLE PRECISION
|
||
|
*> On entry, the sum of squares of computed contributions to
|
||
|
*> the Dif-estimate under computation by DTGSYL, where the
|
||
|
*> scaling factor RDSCAL (see below) has been factored out.
|
||
|
*> On exit, the corresponding sum of squares updated with the
|
||
|
*> contributions from the current sub-system.
|
||
|
*> If TRANS = 'T' RDSUM is not touched.
|
||
|
*> NOTE: RDSUM only makes sense when DTGSY2 is called by STGSYL.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in,out] RDSCAL
|
||
|
*> \verbatim
|
||
|
*> RDSCAL is DOUBLE PRECISION
|
||
|
*> On entry, scaling factor used to prevent overflow in RDSUM.
|
||
|
*> On exit, RDSCAL is updated w.r.t. the current contributions
|
||
|
*> in RDSUM.
|
||
|
*> If TRANS = 'T', RDSCAL is not touched.
|
||
|
*> NOTE: RDSCAL only makes sense when DTGSY2 is called by
|
||
|
*> DTGSYL.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] IPIV
|
||
|
*> \verbatim
|
||
|
*> IPIV is INTEGER array, dimension (N).
|
||
|
*> The pivot indices; for 1 <= i <= N, row i of the
|
||
|
*> matrix has been interchanged with row IPIV(i).
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] JPIV
|
||
|
*> \verbatim
|
||
|
*> JPIV is INTEGER array, dimension (N).
|
||
|
*> The pivot indices; for 1 <= j <= N, column j of the
|
||
|
*> matrix has been interchanged with column JPIV(j).
|
||
|
*> \endverbatim
|
||
|
*
|
||
|
* Authors:
|
||
|
* ========
|
||
|
*
|
||
|
*> \author Univ. of Tennessee
|
||
|
*> \author Univ. of California Berkeley
|
||
|
*> \author Univ. of Colorado Denver
|
||
|
*> \author NAG Ltd.
|
||
|
*
|
||
|
*> \ingroup doubleOTHERauxiliary
|
||
|
*
|
||
|
*> \par Further Details:
|
||
|
* =====================
|
||
|
*>
|
||
|
*> This routine is a further developed implementation of algorithm
|
||
|
*> BSOLVE in [1] using complete pivoting in the LU factorization.
|
||
|
*
|
||
|
*> \par Contributors:
|
||
|
* ==================
|
||
|
*>
|
||
|
*> Bo Kagstrom and Peter Poromaa, Department of Computing Science,
|
||
|
*> Umea University, S-901 87 Umea, Sweden.
|
||
|
*
|
||
|
*> \par References:
|
||
|
* ================
|
||
|
*>
|
||
|
*> \verbatim
|
||
|
*>
|
||
|
*>
|
||
|
*> [1] Bo Kagstrom and Lars Westin,
|
||
|
*> Generalized Schur Methods with Condition Estimators for
|
||
|
*> Solving the Generalized Sylvester Equation, IEEE Transactions
|
||
|
*> on Automatic Control, Vol. 34, No. 7, July 1989, pp 745-751.
|
||
|
*>
|
||
|
*> [2] Peter Poromaa,
|
||
|
*> On Efficient and Robust Estimators for the Separation
|
||
|
*> between two Regular Matrix Pairs with Applications in
|
||
|
*> Condition Estimation. Report IMINF-95.05, Departement of
|
||
|
*> Computing Science, Umea University, S-901 87 Umea, Sweden, 1995.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
* =====================================================================
|
||
|
SUBROUTINE DLATDF( IJOB, N, Z, LDZ, RHS, RDSUM, RDSCAL, IPIV,
|
||
|
$ JPIV )
|
||
|
*
|
||
|
* -- LAPACK auxiliary routine --
|
||
|
* -- LAPACK is a software package provided by Univ. of Tennessee, --
|
||
|
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
||
|
*
|
||
|
* .. Scalar Arguments ..
|
||
|
INTEGER IJOB, LDZ, N
|
||
|
DOUBLE PRECISION RDSCAL, RDSUM
|
||
|
* ..
|
||
|
* .. Array Arguments ..
|
||
|
INTEGER IPIV( * ), JPIV( * )
|
||
|
DOUBLE PRECISION RHS( * ), Z( LDZ, * )
|
||
|
* ..
|
||
|
*
|
||
|
* =====================================================================
|
||
|
*
|
||
|
* .. Parameters ..
|
||
|
INTEGER MAXDIM
|
||
|
PARAMETER ( MAXDIM = 8 )
|
||
|
DOUBLE PRECISION ZERO, ONE
|
||
|
PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 )
|
||
|
* ..
|
||
|
* .. Local Scalars ..
|
||
|
INTEGER I, INFO, J, K
|
||
|
DOUBLE PRECISION BM, BP, PMONE, SMINU, SPLUS, TEMP
|
||
|
* ..
|
||
|
* .. Local Arrays ..
|
||
|
INTEGER IWORK( MAXDIM )
|
||
|
DOUBLE PRECISION WORK( 4*MAXDIM ), XM( MAXDIM ), XP( MAXDIM )
|
||
|
* ..
|
||
|
* .. External Subroutines ..
|
||
|
EXTERNAL DAXPY, DCOPY, DGECON, DGESC2, DLASSQ, DLASWP,
|
||
|
$ DSCAL
|
||
|
* ..
|
||
|
* .. External Functions ..
|
||
|
DOUBLE PRECISION DASUM, DDOT
|
||
|
EXTERNAL DASUM, DDOT
|
||
|
* ..
|
||
|
* .. Intrinsic Functions ..
|
||
|
INTRINSIC ABS, SQRT
|
||
|
* ..
|
||
|
* .. Executable Statements ..
|
||
|
*
|
||
|
IF( IJOB.NE.2 ) THEN
|
||
|
*
|
||
|
* Apply permutations IPIV to RHS
|
||
|
*
|
||
|
CALL DLASWP( 1, RHS, LDZ, 1, N-1, IPIV, 1 )
|
||
|
*
|
||
|
* Solve for L-part choosing RHS either to +1 or -1.
|
||
|
*
|
||
|
PMONE = -ONE
|
||
|
*
|
||
|
DO 10 J = 1, N - 1
|
||
|
BP = RHS( J ) + ONE
|
||
|
BM = RHS( J ) - ONE
|
||
|
SPLUS = ONE
|
||
|
*
|
||
|
* Look-ahead for L-part RHS(1:N-1) = + or -1, SPLUS and
|
||
|
* SMIN computed more efficiently than in BSOLVE [1].
|
||
|
*
|
||
|
SPLUS = SPLUS + DDOT( N-J, Z( J+1, J ), 1, Z( J+1, J ), 1 )
|
||
|
SMINU = DDOT( N-J, Z( J+1, J ), 1, RHS( J+1 ), 1 )
|
||
|
SPLUS = SPLUS*RHS( J )
|
||
|
IF( SPLUS.GT.SMINU ) THEN
|
||
|
RHS( J ) = BP
|
||
|
ELSE IF( SMINU.GT.SPLUS ) THEN
|
||
|
RHS( J ) = BM
|
||
|
ELSE
|
||
|
*
|
||
|
* In this case the updating sums are equal and we can
|
||
|
* choose RHS(J) +1 or -1. The first time this happens
|
||
|
* we choose -1, thereafter +1. This is a simple way to
|
||
|
* get good estimates of matrices like Byers well-known
|
||
|
* example (see [1]). (Not done in BSOLVE.)
|
||
|
*
|
||
|
RHS( J ) = RHS( J ) + PMONE
|
||
|
PMONE = ONE
|
||
|
END IF
|
||
|
*
|
||
|
* Compute the remaining r.h.s.
|
||
|
*
|
||
|
TEMP = -RHS( J )
|
||
|
CALL DAXPY( N-J, TEMP, Z( J+1, J ), 1, RHS( J+1 ), 1 )
|
||
|
*
|
||
|
10 CONTINUE
|
||
|
*
|
||
|
* Solve for U-part, look-ahead for RHS(N) = +-1. This is not done
|
||
|
* in BSOLVE and will hopefully give us a better estimate because
|
||
|
* any ill-conditioning of the original matrix is transferred to U
|
||
|
* and not to L. U(N, N) is an approximation to sigma_min(LU).
|
||
|
*
|
||
|
CALL DCOPY( N-1, RHS, 1, XP, 1 )
|
||
|
XP( N ) = RHS( N ) + ONE
|
||
|
RHS( N ) = RHS( N ) - ONE
|
||
|
SPLUS = ZERO
|
||
|
SMINU = ZERO
|
||
|
DO 30 I = N, 1, -1
|
||
|
TEMP = ONE / Z( I, I )
|
||
|
XP( I ) = XP( I )*TEMP
|
||
|
RHS( I ) = RHS( I )*TEMP
|
||
|
DO 20 K = I + 1, N
|
||
|
XP( I ) = XP( I ) - XP( K )*( Z( I, K )*TEMP )
|
||
|
RHS( I ) = RHS( I ) - RHS( K )*( Z( I, K )*TEMP )
|
||
|
20 CONTINUE
|
||
|
SPLUS = SPLUS + ABS( XP( I ) )
|
||
|
SMINU = SMINU + ABS( RHS( I ) )
|
||
|
30 CONTINUE
|
||
|
IF( SPLUS.GT.SMINU )
|
||
|
$ CALL DCOPY( N, XP, 1, RHS, 1 )
|
||
|
*
|
||
|
* Apply the permutations JPIV to the computed solution (RHS)
|
||
|
*
|
||
|
CALL DLASWP( 1, RHS, LDZ, 1, N-1, JPIV, -1 )
|
||
|
*
|
||
|
* Compute the sum of squares
|
||
|
*
|
||
|
CALL DLASSQ( N, RHS, 1, RDSCAL, RDSUM )
|
||
|
*
|
||
|
ELSE
|
||
|
*
|
||
|
* IJOB = 2, Compute approximate nullvector XM of Z
|
||
|
*
|
||
|
CALL DGECON( 'I', N, Z, LDZ, ONE, TEMP, WORK, IWORK, INFO )
|
||
|
CALL DCOPY( N, WORK( N+1 ), 1, XM, 1 )
|
||
|
*
|
||
|
* Compute RHS
|
||
|
*
|
||
|
CALL DLASWP( 1, XM, LDZ, 1, N-1, IPIV, -1 )
|
||
|
TEMP = ONE / SQRT( DDOT( N, XM, 1, XM, 1 ) )
|
||
|
CALL DSCAL( N, TEMP, XM, 1 )
|
||
|
CALL DCOPY( N, XM, 1, XP, 1 )
|
||
|
CALL DAXPY( N, ONE, RHS, 1, XP, 1 )
|
||
|
CALL DAXPY( N, -ONE, XM, 1, RHS, 1 )
|
||
|
CALL DGESC2( N, Z, LDZ, RHS, IPIV, JPIV, TEMP )
|
||
|
CALL DGESC2( N, Z, LDZ, XP, IPIV, JPIV, TEMP )
|
||
|
IF( DASUM( N, XP, 1 ).GT.DASUM( N, RHS, 1 ) )
|
||
|
$ CALL DCOPY( N, XP, 1, RHS, 1 )
|
||
|
*
|
||
|
* Compute the sum of squares
|
||
|
*
|
||
|
CALL DLASSQ( N, RHS, 1, RDSCAL, RDSUM )
|
||
|
*
|
||
|
END IF
|
||
|
*
|
||
|
RETURN
|
||
|
*
|
||
|
* End of DLATDF
|
||
|
*
|
||
|
END
|