You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
165 lines
4.7 KiB
165 lines
4.7 KiB
2 years ago
|
*> \brief <b> DPTSV computes the solution to system of linear equations A * X = B for PT matrices</b>
|
||
|
*
|
||
|
* =========== DOCUMENTATION ===========
|
||
|
*
|
||
|
* Online html documentation available at
|
||
|
* http://www.netlib.org/lapack/explore-html/
|
||
|
*
|
||
|
*> \htmlonly
|
||
|
*> Download DPTSV + dependencies
|
||
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dptsv.f">
|
||
|
*> [TGZ]</a>
|
||
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dptsv.f">
|
||
|
*> [ZIP]</a>
|
||
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dptsv.f">
|
||
|
*> [TXT]</a>
|
||
|
*> \endhtmlonly
|
||
|
*
|
||
|
* Definition:
|
||
|
* ===========
|
||
|
*
|
||
|
* SUBROUTINE DPTSV( N, NRHS, D, E, B, LDB, INFO )
|
||
|
*
|
||
|
* .. Scalar Arguments ..
|
||
|
* INTEGER INFO, LDB, N, NRHS
|
||
|
* ..
|
||
|
* .. Array Arguments ..
|
||
|
* DOUBLE PRECISION B( LDB, * ), D( * ), E( * )
|
||
|
* ..
|
||
|
*
|
||
|
*
|
||
|
*> \par Purpose:
|
||
|
* =============
|
||
|
*>
|
||
|
*> \verbatim
|
||
|
*>
|
||
|
*> DPTSV computes the solution to a real system of linear equations
|
||
|
*> A*X = B, where A is an N-by-N symmetric positive definite tridiagonal
|
||
|
*> matrix, and X and B are N-by-NRHS matrices.
|
||
|
*>
|
||
|
*> A is factored as A = L*D*L**T, and the factored form of A is then
|
||
|
*> used to solve the system of equations.
|
||
|
*> \endverbatim
|
||
|
*
|
||
|
* Arguments:
|
||
|
* ==========
|
||
|
*
|
||
|
*> \param[in] N
|
||
|
*> \verbatim
|
||
|
*> N is INTEGER
|
||
|
*> The order of the matrix A. N >= 0.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] NRHS
|
||
|
*> \verbatim
|
||
|
*> NRHS is INTEGER
|
||
|
*> The number of right hand sides, i.e., the number of columns
|
||
|
*> of the matrix B. NRHS >= 0.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in,out] D
|
||
|
*> \verbatim
|
||
|
*> D is DOUBLE PRECISION array, dimension (N)
|
||
|
*> On entry, the n diagonal elements of the tridiagonal matrix
|
||
|
*> A. On exit, the n diagonal elements of the diagonal matrix
|
||
|
*> D from the factorization A = L*D*L**T.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in,out] E
|
||
|
*> \verbatim
|
||
|
*> E is DOUBLE PRECISION array, dimension (N-1)
|
||
|
*> On entry, the (n-1) subdiagonal elements of the tridiagonal
|
||
|
*> matrix A. On exit, the (n-1) subdiagonal elements of the
|
||
|
*> unit bidiagonal factor L from the L*D*L**T factorization of
|
||
|
*> A. (E can also be regarded as the superdiagonal of the unit
|
||
|
*> bidiagonal factor U from the U**T*D*U factorization of A.)
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in,out] B
|
||
|
*> \verbatim
|
||
|
*> B is DOUBLE PRECISION array, dimension (LDB,NRHS)
|
||
|
*> On entry, the N-by-NRHS right hand side matrix B.
|
||
|
*> On exit, if INFO = 0, the N-by-NRHS solution matrix X.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] LDB
|
||
|
*> \verbatim
|
||
|
*> LDB is INTEGER
|
||
|
*> The leading dimension of the array B. LDB >= max(1,N).
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] INFO
|
||
|
*> \verbatim
|
||
|
*> INFO is INTEGER
|
||
|
*> = 0: successful exit
|
||
|
*> < 0: if INFO = -i, the i-th argument had an illegal value
|
||
|
*> > 0: if INFO = i, the leading principal minor of order i
|
||
|
*> is not positive, and the solution has not been
|
||
|
*> computed. The factorization has not been completed
|
||
|
*> unless i = N.
|
||
|
*> \endverbatim
|
||
|
*
|
||
|
* Authors:
|
||
|
* ========
|
||
|
*
|
||
|
*> \author Univ. of Tennessee
|
||
|
*> \author Univ. of California Berkeley
|
||
|
*> \author Univ. of Colorado Denver
|
||
|
*> \author NAG Ltd.
|
||
|
*
|
||
|
*> \ingroup doublePTsolve
|
||
|
*
|
||
|
* =====================================================================
|
||
|
SUBROUTINE DPTSV( N, NRHS, D, E, B, LDB, INFO )
|
||
|
*
|
||
|
* -- LAPACK driver routine --
|
||
|
* -- LAPACK is a software package provided by Univ. of Tennessee, --
|
||
|
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
||
|
*
|
||
|
* .. Scalar Arguments ..
|
||
|
INTEGER INFO, LDB, N, NRHS
|
||
|
* ..
|
||
|
* .. Array Arguments ..
|
||
|
DOUBLE PRECISION B( LDB, * ), D( * ), E( * )
|
||
|
* ..
|
||
|
*
|
||
|
* =====================================================================
|
||
|
*
|
||
|
* .. External Subroutines ..
|
||
|
EXTERNAL DPTTRF, DPTTRS, XERBLA
|
||
|
* ..
|
||
|
* .. Intrinsic Functions ..
|
||
|
INTRINSIC MAX
|
||
|
* ..
|
||
|
* .. Executable Statements ..
|
||
|
*
|
||
|
* Test the input parameters.
|
||
|
*
|
||
|
INFO = 0
|
||
|
IF( N.LT.0 ) THEN
|
||
|
INFO = -1
|
||
|
ELSE IF( NRHS.LT.0 ) THEN
|
||
|
INFO = -2
|
||
|
ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
|
||
|
INFO = -6
|
||
|
END IF
|
||
|
IF( INFO.NE.0 ) THEN
|
||
|
CALL XERBLA( 'DPTSV ', -INFO )
|
||
|
RETURN
|
||
|
END IF
|
||
|
*
|
||
|
* Compute the L*D*L**T (or U**T*D*U) factorization of A.
|
||
|
*
|
||
|
CALL DPTTRF( N, D, E, INFO )
|
||
|
IF( INFO.EQ.0 ) THEN
|
||
|
*
|
||
|
* Solve the system A*X = B, overwriting B with X.
|
||
|
*
|
||
|
CALL DPTTRS( N, NRHS, D, E, B, LDB, INFO )
|
||
|
END IF
|
||
|
RETURN
|
||
|
*
|
||
|
* End of DPTSV
|
||
|
*
|
||
|
END
|