You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
236 lines
6.2 KiB
236 lines
6.2 KiB
2 years ago
|
*> \brief \b DSPCON
|
||
|
*
|
||
|
* =========== DOCUMENTATION ===========
|
||
|
*
|
||
|
* Online html documentation available at
|
||
|
* http://www.netlib.org/lapack/explore-html/
|
||
|
*
|
||
|
*> \htmlonly
|
||
|
*> Download DSPCON + dependencies
|
||
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dspcon.f">
|
||
|
*> [TGZ]</a>
|
||
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dspcon.f">
|
||
|
*> [ZIP]</a>
|
||
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dspcon.f">
|
||
|
*> [TXT]</a>
|
||
|
*> \endhtmlonly
|
||
|
*
|
||
|
* Definition:
|
||
|
* ===========
|
||
|
*
|
||
|
* SUBROUTINE DSPCON( UPLO, N, AP, IPIV, ANORM, RCOND, WORK, IWORK,
|
||
|
* INFO )
|
||
|
*
|
||
|
* .. Scalar Arguments ..
|
||
|
* CHARACTER UPLO
|
||
|
* INTEGER INFO, N
|
||
|
* DOUBLE PRECISION ANORM, RCOND
|
||
|
* ..
|
||
|
* .. Array Arguments ..
|
||
|
* INTEGER IPIV( * ), IWORK( * )
|
||
|
* DOUBLE PRECISION AP( * ), WORK( * )
|
||
|
* ..
|
||
|
*
|
||
|
*
|
||
|
*> \par Purpose:
|
||
|
* =============
|
||
|
*>
|
||
|
*> \verbatim
|
||
|
*>
|
||
|
*> DSPCON estimates the reciprocal of the condition number (in the
|
||
|
*> 1-norm) of a real symmetric packed matrix A using the factorization
|
||
|
*> A = U*D*U**T or A = L*D*L**T computed by DSPTRF.
|
||
|
*>
|
||
|
*> An estimate is obtained for norm(inv(A)), and the reciprocal of the
|
||
|
*> condition number is computed as RCOND = 1 / (ANORM * norm(inv(A))).
|
||
|
*> \endverbatim
|
||
|
*
|
||
|
* Arguments:
|
||
|
* ==========
|
||
|
*
|
||
|
*> \param[in] UPLO
|
||
|
*> \verbatim
|
||
|
*> UPLO is CHARACTER*1
|
||
|
*> Specifies whether the details of the factorization are stored
|
||
|
*> as an upper or lower triangular matrix.
|
||
|
*> = 'U': Upper triangular, form is A = U*D*U**T;
|
||
|
*> = 'L': Lower triangular, form is A = L*D*L**T.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] N
|
||
|
*> \verbatim
|
||
|
*> N is INTEGER
|
||
|
*> The order of the matrix A. N >= 0.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] AP
|
||
|
*> \verbatim
|
||
|
*> AP is DOUBLE PRECISION array, dimension (N*(N+1)/2)
|
||
|
*> The block diagonal matrix D and the multipliers used to
|
||
|
*> obtain the factor U or L as computed by DSPTRF, stored as a
|
||
|
*> packed triangular matrix.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] IPIV
|
||
|
*> \verbatim
|
||
|
*> IPIV is INTEGER array, dimension (N)
|
||
|
*> Details of the interchanges and the block structure of D
|
||
|
*> as determined by DSPTRF.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] ANORM
|
||
|
*> \verbatim
|
||
|
*> ANORM is DOUBLE PRECISION
|
||
|
*> The 1-norm of the original matrix A.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] RCOND
|
||
|
*> \verbatim
|
||
|
*> RCOND is DOUBLE PRECISION
|
||
|
*> The reciprocal of the condition number of the matrix A,
|
||
|
*> computed as RCOND = 1/(ANORM * AINVNM), where AINVNM is an
|
||
|
*> estimate of the 1-norm of inv(A) computed in this routine.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] WORK
|
||
|
*> \verbatim
|
||
|
*> WORK is DOUBLE PRECISION array, dimension (2*N)
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] IWORK
|
||
|
*> \verbatim
|
||
|
*> IWORK is INTEGER array, dimension (N)
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] INFO
|
||
|
*> \verbatim
|
||
|
*> INFO is INTEGER
|
||
|
*> = 0: successful exit
|
||
|
*> < 0: if INFO = -i, the i-th argument had an illegal value
|
||
|
*> \endverbatim
|
||
|
*
|
||
|
* Authors:
|
||
|
* ========
|
||
|
*
|
||
|
*> \author Univ. of Tennessee
|
||
|
*> \author Univ. of California Berkeley
|
||
|
*> \author Univ. of Colorado Denver
|
||
|
*> \author NAG Ltd.
|
||
|
*
|
||
|
*> \ingroup doubleOTHERcomputational
|
||
|
*
|
||
|
* =====================================================================
|
||
|
SUBROUTINE DSPCON( UPLO, N, AP, IPIV, ANORM, RCOND, WORK, IWORK,
|
||
|
$ INFO )
|
||
|
*
|
||
|
* -- LAPACK computational routine --
|
||
|
* -- LAPACK is a software package provided by Univ. of Tennessee, --
|
||
|
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
||
|
*
|
||
|
* .. Scalar Arguments ..
|
||
|
CHARACTER UPLO
|
||
|
INTEGER INFO, N
|
||
|
DOUBLE PRECISION ANORM, RCOND
|
||
|
* ..
|
||
|
* .. Array Arguments ..
|
||
|
INTEGER IPIV( * ), IWORK( * )
|
||
|
DOUBLE PRECISION AP( * ), WORK( * )
|
||
|
* ..
|
||
|
*
|
||
|
* =====================================================================
|
||
|
*
|
||
|
* .. Parameters ..
|
||
|
DOUBLE PRECISION ONE, ZERO
|
||
|
PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0 )
|
||
|
* ..
|
||
|
* .. Local Scalars ..
|
||
|
LOGICAL UPPER
|
||
|
INTEGER I, IP, KASE
|
||
|
DOUBLE PRECISION AINVNM
|
||
|
* ..
|
||
|
* .. Local Arrays ..
|
||
|
INTEGER ISAVE( 3 )
|
||
|
* ..
|
||
|
* .. External Functions ..
|
||
|
LOGICAL LSAME
|
||
|
EXTERNAL LSAME
|
||
|
* ..
|
||
|
* .. External Subroutines ..
|
||
|
EXTERNAL DLACN2, DSPTRS, XERBLA
|
||
|
* ..
|
||
|
* .. Executable Statements ..
|
||
|
*
|
||
|
* Test the input parameters.
|
||
|
*
|
||
|
INFO = 0
|
||
|
UPPER = LSAME( UPLO, 'U' )
|
||
|
IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
|
||
|
INFO = -1
|
||
|
ELSE IF( N.LT.0 ) THEN
|
||
|
INFO = -2
|
||
|
ELSE IF( ANORM.LT.ZERO ) THEN
|
||
|
INFO = -5
|
||
|
END IF
|
||
|
IF( INFO.NE.0 ) THEN
|
||
|
CALL XERBLA( 'DSPCON', -INFO )
|
||
|
RETURN
|
||
|
END IF
|
||
|
*
|
||
|
* Quick return if possible
|
||
|
*
|
||
|
RCOND = ZERO
|
||
|
IF( N.EQ.0 ) THEN
|
||
|
RCOND = ONE
|
||
|
RETURN
|
||
|
ELSE IF( ANORM.LE.ZERO ) THEN
|
||
|
RETURN
|
||
|
END IF
|
||
|
*
|
||
|
* Check that the diagonal matrix D is nonsingular.
|
||
|
*
|
||
|
IF( UPPER ) THEN
|
||
|
*
|
||
|
* Upper triangular storage: examine D from bottom to top
|
||
|
*
|
||
|
IP = N*( N+1 ) / 2
|
||
|
DO 10 I = N, 1, -1
|
||
|
IF( IPIV( I ).GT.0 .AND. AP( IP ).EQ.ZERO )
|
||
|
$ RETURN
|
||
|
IP = IP - I
|
||
|
10 CONTINUE
|
||
|
ELSE
|
||
|
*
|
||
|
* Lower triangular storage: examine D from top to bottom.
|
||
|
*
|
||
|
IP = 1
|
||
|
DO 20 I = 1, N
|
||
|
IF( IPIV( I ).GT.0 .AND. AP( IP ).EQ.ZERO )
|
||
|
$ RETURN
|
||
|
IP = IP + N - I + 1
|
||
|
20 CONTINUE
|
||
|
END IF
|
||
|
*
|
||
|
* Estimate the 1-norm of the inverse.
|
||
|
*
|
||
|
KASE = 0
|
||
|
30 CONTINUE
|
||
|
CALL DLACN2( N, WORK( N+1 ), WORK, IWORK, AINVNM, KASE, ISAVE )
|
||
|
IF( KASE.NE.0 ) THEN
|
||
|
*
|
||
|
* Multiply by inv(L*D*L**T) or inv(U*D*U**T).
|
||
|
*
|
||
|
CALL DSPTRS( UPLO, N, 1, AP, IPIV, WORK, N, INFO )
|
||
|
GO TO 30
|
||
|
END IF
|
||
|
*
|
||
|
* Compute the estimate of the reciprocal condition number.
|
||
|
*
|
||
|
IF( AINVNM.NE.ZERO )
|
||
|
$ RCOND = ( ONE / AINVNM ) / ANORM
|
||
|
*
|
||
|
RETURN
|
||
|
*
|
||
|
* End of DSPCON
|
||
|
*
|
||
|
END
|